留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
数据统计

分享

计量
  • 文章访问数:  50
  • HTML全文浏览量:  21
  • PDF下载量:  15
  • 被引次数: 0
Chen Chen, Hongyu Xue, Qilin Hu, Mengfan Wang, Pan Shang, Ziyan Liu, Tao Peng, Deyang Zhang, and Yongsong Luo, Construction of 3D porous Cu1.81S/nitrogen-doped carbon frameworks for ultrafast and long-cycle life sodium-ion storage, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2890-z
Cite this article as:
Chen Chen, Hongyu Xue, Qilin Hu, Mengfan Wang, Pan Shang, Ziyan Liu, Tao Peng, Deyang Zhang, and Yongsong Luo, Construction of 3D porous Cu1.81S/nitrogen-doped carbon frameworks for ultrafast and long-cycle life sodium-ion storage, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2890-z
引用本文 PDF XML SpringerLink
  • Research Article

    Construction of 3D porous Cu1.81S/nitrogen-doped carbon frameworks for ultrafast and long-cycle life sodium-ion storage

    + Author Affiliations
    • Transition metal sulfides have great potential as anode materials for sodium-ion batteries (SIBs) due to their high theoretical specific capacities. However, the inferior intrinsic conductivity and large volume variation during sodiation-desodiation processes seriously affect its high-rate and long-cycle performance, unbeneficial for the application as fast-charging and long-cycling SIBs anode. Herein, the three-dimensional porous Cu1.81S/nitrogen-doped carbon frameworks (Cu1.81S/NC) are synthesized by the simple and facile sol-gel and annealing processes, which can accommodate the volumetric expansion of Cu1.81S nanoparticles and accelerate the transmission of ions and electrons during Na+ insertion/extraction processes, exhibiting the excellent rate capability (250.6 mAh g-1 at 20 A g-1) and outstanding cycling stability (70% capacity retention for 6000 cycles at 10 A g-1) for SIBs. Moreover, the Na-ion full cells coupled with Na3V2(PO4)3/C cathode also demonstrate the satisfactory reversible specific capacity of 330.5 mAh g-1 at 5 A g-1 and long-cycle performance with the 86.9% capacity retention at 2.0 A g-1 after 750 cycles. This work proposes a promising way for the conversion-based metal sulfides for the applications as fast-charging sodium-ion battery anode.

    • loading

    Catalog


    • /

      返回文章
      返回