留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 11
Nov.  2024

图(14)

数据统计

分享

计量
  • 文章访问数:  432
  • HTML全文浏览量:  155
  • PDF下载量:  31
  • 被引次数: 0
Xinxin Nie, Qian Yin, Manchao He, Qi Wang, Hongwen Jing, Bowen Zheng, Bo Meng, Tianci Deng, Zheng Jiang, and Jiangyu Wu, Shear mechanical properties and fracturing responses of layered rough jointed rock-like materials, Int. J. Miner. Metall. Mater., 31(2024), No. 11, pp. 2417-2434. https://doi.org/10.1007/s12613-024-2893-9
Cite this article as:
Xinxin Nie, Qian Yin, Manchao He, Qi Wang, Hongwen Jing, Bowen Zheng, Bo Meng, Tianci Deng, Zheng Jiang, and Jiangyu Wu, Shear mechanical properties and fracturing responses of layered rough jointed rock-like materials, Int. J. Miner. Metall. Mater., 31(2024), No. 11, pp. 2417-2434. https://doi.org/10.1007/s12613-024-2893-9
引用本文 PDF XML SpringerLink
研究论文

层状粗糙节理类岩材料剪切力学特性及断裂响应



  • 通讯作者:

    尹乾    E-mail: Jeryin@foxmail.com

    吴疆宇    E-mail: wujiangyu@cumt.edu.cn

文章亮点

  • (1) 揭示了层状粗糙节理岩体的剪切力学特性
  • (2) 监测了剪切过程中裂纹活动和应变场演化
  • (3) 分析了层间诱导效应和剪破面粗糙度差异
  • 层状粗糙节理岩体表现出显著的各向异性,在开挖扰动影响下,易相对错动从而发生剪切滑移破坏,给巷道围岩变形和稳定性控制带来巨大挑战。本文旨在研究层状粗糙节理岩体的直剪力学特性和渐进失稳破坏机理。首先,采用类岩石材料浇筑了具有不同节理面粗糙度(JRC = 2–20)和节理面倾角(α = 15°–75°)的立方体试样,并开展了不同初始法向应力下的直剪试验(σn = 1–4 MPa)。试验结果表明,不同工况下层状岩体的力学特性、声发射(AE)响应、最大主应变场演化和最终破坏模式存在显著差异。峰值应力随α的增加而增大,在α = 60°或75°时达到最大值。随σn的增加,峰值应力呈上升趋势,线性最小二乘拟合的相关系数R2在0.918至0.995之间。当JRC从2–4增加到18–20,α = 15°时内聚力增大86.32%,而α = 75°时减小27.93%。α的不同引起剪切破裂面粗糙特征差异显著,使得峰后AE响应呈现各向异性特征。α = 15°时,剪切破裂面沿软弱夹层形成,而当α = 60°时,剪切破裂面穿透层状基质。随σn的增加,α = 15°时相邻软弱夹层诱导拉裂纹扩展方向改变,裂纹呈现阶梯状分布特征。
  • Research Article

    Shear mechanical properties and fracturing responses of layered rough jointed rock-like materials

    + Author Affiliations
    • This study aims to investigate mechanical properties and failure mechanisms of layered rock with rough joint surfaces under direct shear loading. Cubic layered samples with dimensions of 100 mm × 100 mm × 100 mm were casted using rock-like materials, with anisotropic angle (α) and joint roughness coefficient (JRC) ranging from 15° to 75° and 2–20, respectively. The direct shear tests were conducted under the application of initial normal stress (σn) ranging from 1–4 MPa. The test results indicate significant differences in mechanical properties, acoustic emission (AE) responses, maximum principal strain fields, and ultimate failure modes of layered samples under different test conditions. The peak stress increases with the increasing α and achieves a maximum value at α = 60° or 75°. As σn increases, the peak stress shows an increasing trend, with correlation coefficients R² ranging from 0.918 to 0.995 for the linear least squares fitting. As JRC increases from 2–4 to 18–20, the cohesion increases by 86.32% when α = 15°, while the cohesion decreases by 27.93% when α = 75°. The differences in roughness characteristics of shear failure surface induced by α result in anisotropic post-peak AE responses, which is characterized by active AE signals when α is small and quiet AE signals for a large α. For a given JRC = 6–8 and σn = 1 MPa, as α increases, the accumulative AE counts increase by 224.31% (α increased from 15° to 60°), and then decrease by 14.68% (α increased from 60° to 75°). The shear failure surface is formed along the weak interlayer when α = 15° and penetrates the layered matrix when α = 60°. When α = 15°, as σn increases, the adjacent weak interlayer induces a change in the direction of tensile cracks propagation, resulting in a stepped pattern of cracks distribution. The increase in JRC intensifies roughness characteristics of shear failure surface for a small α, however, it is not pronounced for a large α. The findings will contribute to a better understanding of the mechanical responses and failure mechanisms of the layered rocks subjected to shear loads.
    • loading
    • Supplementary Information-s12613-024-2893-9.docx
    • [1]
      H.L. Jia, S. Ding, F. Zi, G.Y. Li, and Y. Yao, Development of anisotropy in sandstone subjected to repeated frost action, Rock Mech. Rock Eng., 54(2021), No. 4, p. 1863. doi: 10.1007/s00603-020-02343-5
      [2]
      X.L. Wang, Y.X. Zhao, X.L. Zhang, Z. Sun, Y.R. Gao, and Y.D. Jiang, Effects of anisotropy on strength and deformability of anthracite under high confinement, Rock Mech. Rock Eng., 56(2023), No. 3, p. 2157. doi: 10.1007/s00603-022-03140-y
      [3]
      D.C. Zhao, Y.J. Xia, C.Q. Zhang, et al., A new method to investigate the size effect and anisotropy of mechanical properties of columnar jointed rock mass, Rock Mech. Rock Eng., 56(2023), No. 4, p. 2829. doi: 10.1007/s00603-022-03200-3
      [4]
      L.R. Ban, W.S. Du, C.Z. Qi, and C. Zhu, Modified 2D roughness parameters for rock joints at two different scales and their correlation with JRC, Int. J. Rock Mech. Min. Sci., 137(2021), art. No. 104549. doi: 10.1016/j.ijrmms.2020.104549
      [5]
      N.N. Li, Y.Q. Zhou, and H.B. Li, Experimental study for the effect of joint surface characteristics on stress wave propagation, Geomech. Geophys. Geo Energy Geo Resour., 7(2021), No. 3, art. No. 50. doi: 10.1007/s40948-021-00235-8
      [6]
      H.J. Su, Y. Jiang, L.Y. Yu, W.B. Wang, and Q.Z. Guo, Dynamic fracture and deformation responses of rock mass specimens containing 3D printing rough joint subjected to impact loading, Geomech. Geophys. Geo Energy Geo Resour., 8(2022), No. 6, art. No. 186. doi: 10.1007/s40948-022-00501-3
      [7]
      X.Z. Wu, H.F. Zheng, and Y.J. Jiang, Influence of joint roughness on the shear properties of energy-absorbing bolt, Int. J. Rock Mech. Min. Sci., 163(2023), art. No. 105322. doi: 10.1016/j.ijrmms.2022.105322
      [8]
      M.Y. Zhai, L. Xue, H.R. Chen, C. Xu, and Y. Cui, Effects of shear rates on the damaging behaviors of layered rocks subjected to direct shear: Insights from acoustic emission characteristics, Eng. Fract. Mech., 258(2021), art. No. 108046. doi: 10.1016/j.engfracmech.2021.108046
      [9]
      F. Jiang, G. Wang, P. He, et al., Mechanical failure analysis during direct shear of double-joint rock mass, Bull. Eng. Geol. Environ., 81(2022), No. 10, art. No. 410. doi: 10.1007/s10064-022-02930-6
      [10]
      Z.B. Zhong, R.G. Deng, J. Zhang, and X.Z. Hu, Fracture properties of jointed rock infilled with mortar under uniaxial compression, Eng. Fract. Mech., 228(2020), art. No. 106822. doi: 10.1016/j.engfracmech.2019.106822
      [11]
      J.T. Zhang, M. Kikumoto, H. Yasuhara, S. Ogata, and K. Kishida, Modeling the shearing behavior of discontinuous rock mass incorporating dilation of joint aperture, Int. J. Rock Mech. Min. Sci., 153(2022), art. No. 105101. doi: 10.1016/j.ijrmms.2022.105101
      [12]
      J.Y. Wu, H.W. Jing, Y. Gao, Q.B. Meng, Q. Yin, and Y. Du, Effects of carbon nanotube dosage and aggregate size distribution on mechanical property and microstructure of cemented rockfill, Cem. Concr. Compos., 127(2022), art. No. 104408. doi: 10.1016/j.cemconcomp.2022.104408
      [13]
      J.Y. Wu, H.S. Wong, H. Zhang, Q. Yin, H.W. Jing, and D. Ma, Improvement of cemented rockfill by premixing low-alkalinity activator and fly ash for recycling gangue and partially replacing cement, Cem. Concr. Compos., 145(2024), art. No. 105345. doi: 10.1016/j.cemconcomp.2023.105345
      [14]
      Y. Tian, W.Z. Chen, H.M. Tian, J.P. Yang, Z.Y. Zhang, and X.Y. Shu, Analytical model of layered rock considering its time-dependent behaviour, Rock Mech. Rock Eng., 54(2021), No. 11, p. 5937. doi: 10.1007/s00603-021-02421-2
      [15]
      J.H. Man, M.L. Zhou, D.M. Zhang, H.W. Huang, and J.Y. Chen, Face stability analysis of circular tunnels in layered rock masses using the upper bound theorem, J. Rock Mech. Geotech. Eng., 14(2022), No. 6, p. 1836. doi: 10.1016/j.jrmge.2021.12.023
      [16]
      Y. Tian, X.Y. Shu, H.M. Tian, L.K. He, Y. Jin, and M. Huang, Effect of horizontal stress on the mesoscopic deformation and failure mechanism of layered surrounding rock masses in tunnels, Eng. Fail. Anal., 148(2023), art. No. 107226. doi: 10.1016/j.engfailanal.2023.107226
      [17]
      Y.J. Bai, Z.X. Wang, B. Jiang, et al., Anisotropy of mechanical properties of 2297-T87 Al–Li alloy thick plates, Int. J. Miner. Metall. Mater., 30(2023), No. 11, p. 2212. doi: 10.1007/s12613-023-2652-3
      [18]
      S.M. Faregh, G. Faraji, M.M. Mashhadi, and M. Eftekhari, Texture evolution and mechanical anisotropy of an ultrafine/nano-grained pure copper tube processed via hydrostatic tube cyclic expansion extrusion, Int. J. Miner. Metall. Mater., 29(2022), No. 12, p. 2241. doi: 10.1007/s12613-022-2514-4
      [19]
      X.C. Shi, X. Yang, Y.F. Meng, and G. Li, An anisotropic strength model for layered rocks considering planes of weakness, Rock Mech. Rock Eng., 49(2016), No. 9, p. 3783. doi: 10.1007/s00603-016-0985-1
      [20]
      J.L. Cheng, S.Q. Yang, K. Chen, D. Ma, F.Y. Li, and L.M. Wang, Uniaxial experimental study of the acoustic emission and deformation behavior of composite rock based on 3D digital image correlation (DIC), Acta Mech. Sin., 33(2017), No. 6, p. 999. doi: 10.1007/s10409-017-0706-3
      [21]
      B. Debecker and A. Vervoort, Two-dimensional discrete element simulations of the fracture behaviour of slate, Int. J. Rock Mech. Min. Sci., 61(2013), p. 161. doi: 10.1016/j.ijrmms.2013.02.004
      [22]
      B. Park and K.B. Min, Bonded-particle discrete element modeling of mechanical behavior of transversely isotropic rock, Int. J. Rock Mech. Min. Sci., 76(2015), p. 243. doi: 10.1016/j.ijrmms.2015.03.014
      [23]
      X. Li, Y.T. Duan, S.D. Li, and R.Q. Zhou, Study on the progressive failure characteristics of longmaxi shale under uniaxial compression conditions by X-ray micro-computed tomography, Energies, 10(2017), No. 3, p. 303. doi: 10.3390/en10030303
      [24]
      K. Du, X.F. Li, M. Tao, and S.F. Wang, Experimental study on acoustic emission (AE) characteristics and crack classification during rock fracture in several basic lab tests, Int. J. Rock Mech. Min. Sci., 133(2020), art. No. 104411. doi: 10.1016/j.ijrmms.2020.104411
      [25]
      K. Du, X.F. Li, S.Y. Wang, M. Tao, G. Li, and S.F. Wang, Compression-shear failure properties and acoustic emission (AE) characteristics of rocks in variable angle shear and direct shear tests, Measurement, 183(2021), art. No. 109814. doi: 10.1016/j.measurement.2021.109814
      [26]
      P.S. Andrade and A. Almeida Saraiva, Estimating the joint roughness coefficient of discontinuities found in metamorphic rocks, Bull. Eng. Geol. Environ., 67(2008), No. 3, p. 425. doi: 10.1007/s10064-008-0151-4
      [27]
      B.W. Zheng and S.W. Qi, A new index to describe joint roughness coefficient (JRC) under cyclic shear, Eng. Geol., 212(2016), p. 72. doi: 10.1016/j.enggeo.2016.07.017
      [28]
      L. He, Z.M. Zhao, J.Y. Chen, and D.Y. Liu, Empirical shear strength criterion for rock joints based on joint surface degradation characteristics during shearing, Rock Mech. Rock Eng., 53(2020), No. 8, p. 3609. doi: 10.1007/s00603-020-02120-4
      [29]
      N.G. Tan, R.S. Yang, and Z.Y. Tan, Influence of complicated faults on the differentiation and accumulation of in situ stress in deep rock mass, Int. J. Miner. Metall. Mater., 30(2023), No. 5, p. 791. doi: 10.1007/s12613-022-2528-y
      [30]
      X.G. Liu, W.C. Zhu, Y.X. Liu, Q.L. Yu, and K. Guan, Characterization of rock joint roughness from the classified and weighted uphill projection parameters, Int. J. Geomech., 21(2021), No. 5, art. No. 04021052. doi: 10.1061/(ASCE)GM.1943-5622.0001963
      [31]
      X.Z. Wu, H.F. Zheng, and Y.J. Jiang, Study on the evolution law of rock joint shear stiffness during shearing process through loading-unloading tests, Tunn. Undergr. Space Technol., 127(2022), art. No. 104584. doi: 10.1016/j.tust.2022.104584
      [32]
      H.K. Lê, W.C. Huang, M.C. Liao, and M.C. Weng, Spatial characteristics of rock joint profile roughness and mechanical behavior of a randomly generated rock joint, Eng. Geol., 245(2018), p. 97. doi: 10.1016/j.enggeo.2018.06.017
      [33]
      N. Barton and V. Choubey, The shear strength of rock joints in theory and practice, Rock Mech., 10(1977), No. 1, p. 1.
      [34]
      P. Li, M.F. Cai, Y.B. Gao, M. Gorjian, S.J. Miao, and Y. Wang, Macro/mesofracture and instability behaviors of jointed rocks containing a cavity under uniaxial compression using AE and DIC techniques, Theor. Appl. Fract. Mech., 122(2022), art. No. 103620. doi: 10.1016/j.tafmec.2022.103620
      [35]
      Y.C. Li, W. Wu, and B. Li, An analytical model for two-order asperity degradation of rock joints under constant normal stiffness conditions, Rock Mech. Rock Eng., 51(2018), No. 5, p. 1431. doi: 10.1007/s00603-018-1405-5
      [36]
      Q. Yin, J.Y. Wu, C. Zhu, M.C. He, Q.X. Meng, and H.W. Jing, Shear mechanical responses of sandstone exposed to high temperature under constant normal stiffness boundary conditions, Geomech. Geophys. Geo Energy Geo Resour., 7(2021), No. 2, art. No. 35. doi: 10.1007/s40948-021-00234-9
      [37]
      Q. Yin, H.W. Jing, B. Meng, R.C. Liu, and Y.J. Wu, Shear mechanical properties of 3D rough rock fracture surfaces under constant normal stiffness conditions, Chin. J. Rock Mech. Eng., 39(2020), No. 11, p. 2213.
      [38]
      F. Zhang, T.Z. Cheng, Z.Z. Zhu, D.W. Hu, and J.F. Shao, The effect of pre-heating treatment and water–cement ratio on the shearing behavior and permeability of granite–cement interface samples, Rock Mech. Rock Eng., 54(2021), No. 11, p. 5639. doi: 10.1007/s00603-021-02574-0
      [39]
      T.T. Luo, D. Zou, X.D. Zhao, C.Y. Zhang, T. Han, and Y.C. Song, Strength behaviours of methane hydrate-bearing marine sediments in the South China Sea, J. Nat. Gas Sci. Eng., 100(2022), art. No. 104476. doi: 10.1016/j.jngse.2022.104476
      [40]
      Y. Zhang, J.Y. Lu, W. Han, Y.W. Xiong, and J.S. Qian, Effects of moisture and stone content on the shear strength characteristics of soil-rock mixture, Materials, 16(2023), No. 2, art. No. 567. doi: 10.3390/ma16020567
      [41]
      J. Oh, Y. Li, R. Mitra, and I. Canbulat, A numerical study on dilation of a saw-toothed rock joint under direct shear, Rock Mech. Rock Eng., 50(2017), No. 4, p. 913. doi: 10.1007/s00603-016-1142-6
      [42]
      Q. Yin, X.X. Nie, J.Y. Wu, Q. Wang, K.Q. Bian, and H.W. Jing, Experimental study on unloading induced shear performances of 3D saw-tooth rock fractures, Int. J. Min. Sci. Technol., 33(2023), No. 4, p. 463. doi: 10.1016/j.ijmst.2023.02.002
      [43]
      Q.B. Meng, M.W. Zhang, L.J. Han, H. Pu, and Y.L. Chen, Acoustic emission characteristics of red sandstone specimens under uniaxial cyclic loading and unloading compression, Rock Mech. Rock Eng., 51(2018), No. 4, p. 969. doi: 10.1007/s00603-017-1389-6
      [44]
      T.Y. Guo and Q. Zhao, Acoustic emission characteristics during the microcracking processes of granite, marble and sandstone under mode I loading, Rock Mech. Rock Eng., 55(2022), No. 9, p. 5467. doi: 10.1007/s00603-022-02937-1
      [45]
      X. Zhou, X.F. Liu, X.R. Wang, Y.B. Liu, H. Xie, and P.F. Du, Acoustic emission characteristics of coal failure under triaxial loading and unloading disturbance, Rock Mech. Rock Eng., 56(2023), No. 2, p. 1043. doi: 10.1007/s00603-022-03104-2
      [46]
      G.H. Hu, Q. Yang, X. Qiu, et al., Use of DIC and AE for investigating fracture behaviors of cold recycled asphalt emulsion mixtures with 100% RAP, Constr. Build. Mater., 344(2022), art. No. 128278. doi: 10.1016/j.conbuildmat.2022.128278
      [47]
      J.W. Ying, J.Z. Huang, and J.Z. Xiao, Test and theoretical prediction of chloride ion diffusion in recycled fine aggregate mortar under uniaxial compression, Constr. Build. Mater., 321(2022), art. No. 126384. doi: 10.1016/j.conbuildmat.2022.126384

    Catalog


    • /

      返回文章
      返回