Cite this article as: |
Hao Liao, Shengen Zhang, Bo Liu, Xuefeng He, Jixin Deng, and Yunji Ding, Valuable metals recovery from spent ternary lithium-ion battery: A review, Int. J. Miner. Metall. Mater., 31(2024), No. 12, pp. 2556-2581. https://doi.org/10.1007/s12613-024-2895-7 |
张深根 E-mail: zhangshengen@mater.ustb.edu.cn
丁云集 E-mail: dingyunji@ustb.edu.cn
[1] |
J. Xie and Y.C. Lu, A retrospective on lithium-ion batteries, Nat. Commun., 11(2020), No. 1, art. No. 2499. doi: 10.1038/s41467-020-16259-9
|
[2] |
V. Gupta, X.L. Yu, H.P. Gao, C. Brooks, W.K. Li, and Z. Chen, Scalable direct recycling of cathode black mass from spent lithium-ion batteries, Adv. Energy Mater., 13(2023), No. 6, art. No. 2203093. doi: 10.1002/aenm.202203093
|
[3] |
J.D. Yu, Y.Q. He, Z.Z. Ge, H. Li, W.N. Xie, and S. Wang, A promising physical method for recovery of LiCoO2 and graphite from spent lithium-ion batteries: Grinding flotation, Sep. Purif. Technol., 190(2018), p. 45. doi: 10.1016/j.seppur.2017.08.049
|
[4] |
Z.G. Cun, P. Xing, C.Y. Wang, et al., Stepwise recovery of critical metals from spent NCM lithium-ion battery via calcium hydroxide assisted pyrolysis and leaching, Resour. Conserv. Recycl., 202(2024), art. No. 107390. doi: 10.1016/j.resconrec.2023.107390
|
[5] |
W.H. Yu, Y.C. Zhang, J.H. Hu, et al., Controlled carbothermic reduction for enhanced recovery of metals from spent lithium-ion batteries, Resour. Conserv. Recycl., 194(2023), art. No. 107005. doi: 10.1016/j.resconrec.2023.107005
|
[6] |
J.H. Tan, Q. Wang, S. Chen, et al., Recycling-oriented cathode materials design for lithium-ion batteries: Elegant structures versus complicated compositions, Energy Storage Mater., 41(2021), p. 380. doi: 10.1016/j.ensm.2021.06.021
|
[7] |
J.C. Wei, S.C. Zhao, L.X. Ji, et al., Reuse of Ni–Co–Mn oxides from spent Li-ion batteries to prepare bifunctional air electrodes, Resour. Conserv. Recycl., 129(2018), p. 135. doi: 10.1016/j.resconrec.2017.10.021
|
[8] |
K.M. Winslow, S.J. Laux, and T.G. Townsend, A review on the growing concern and potential management strategies of waste lithium-ion batteries, Resour. Conserv. Recycl., 129(2018), p. 263. doi: 10.1016/j.resconrec.2017.11.001
|
[9] |
W. Mrozik, M.A. Rajaeifar, O. Heidrich, and P.A. Christensen, Environmental impacts, pollution sources and pathways of spent lithium-ion batteries, Energy Environ. Sci., 14(2021), No. 12, p. 6099. doi: 10.1039/D1EE00691F
|
[10] |
Y.F. Shen, Recycling cathode materials of spent lithium-ion batteries for advanced catalysts production, J. Power Sources, 528(2022), art. No. 231220. doi: 10.1016/j.jpowsour.2022.231220
|
[11] |
J.L. Song, W.Y. Yan, H.B. Cao, et al., Material flow analysis on critical raw materials of lithium-ion batteries in China, J. Clean. Prod., 215(2019), p. 570. doi: 10.1016/j.jclepro.2019.01.081
|
[12] |
G. Harper, R. Sommerville, E. Kendrick, et al., Recycling lithium-ion batteries from electric vehicles, Nature, 575(2019), No. 7781, p. 75. doi: 10.1038/s41586-019-1682-5
|
[13] |
B. Makuza, Q.H. Tian, X.Y. Guo, K. Chattopadhyay, and D.W. Yu, Pyrometallurgical options for recycling spent lithium-ion batteries: A comprehensive review, J. Power Sources, 491(2021), art. No. 229622. doi: 10.1016/j.jpowsour.2021.229622
|
[14] |
X.F. Hu, E. Mousa, and G.Z. Ye, Recovery of Co, Ni, Mn, and Li from Li-ion batteries by smelting reduction-Part II: A pilot-scale demonstration, J. Power Sources, 483(2021), art. No. 229089. doi: 10.1016/j.jpowsour.2020.229089
|
[15] |
L. Schwich and B Friedrich, Proven methods for recovery of lithium from spent batteries, [in] DERA Workshop Lithium, Berlin, 2017.
|
[16] |
C. Wang, S.B. Wang, F. Yan, Z. Zhang, X.H. Shen, and Z.T. Zhang, Recycling of spent lithium-ion batteries: Selective ammonia leaching of valuable metals and simultaneous synthesis of high-purity manganese carbonate, Waste Manage., 114(2020), p. 253. doi: 10.1016/j.wasman.2020.07.008
|
[17] |
H.Y. Wang, K. Huang, Y. Zhang, et al., Recovery of lithium, nickel, and cobalt from spent lithium-ion battery powders by selective ammonia leaching and an adsorption separation system, ACS Sustainable Chem. Eng., 5(2017), No. 12, p. 11489. doi: 10.1021/acssuschemeng.7b02700
|
[18] |
Y. Yang, S.Y. Lei, S.L. Song, W. Sun, and L.S. Wang, Stepwise recycling of valuable metals from Ni-rich cathode material of spent lithium-ion batteries, Waste Manage., 102(2020), p. 131. doi: 10.1016/j.wasman.2019.09.044
|
[19] |
N.B. Horeh, S.M. Mousavi, and S.A. Shojaosadati, Bioleaching of valuable metals from spent lithium-ion mobile phone batteries using Aspergillus Niger , J. Power Sources, 320(2016), p. 257.
|
[20] |
J.T. Hu, J.L. Zhang, H.X. Li, Y.Q. Chen, and C.Y. Wang, A promising approach for the recovery of high value-added metals from spent lithium-ion batteries, J. Power Sources, 351(2017), p. 192. doi: 10.1016/j.jpowsour.2017.03.093
|
[21] |
S.Y. Lei, Y.T. Zhang, S.L. Song, et al., Strengthening valuable metal recovery from spent lithium-ion batteries by environmentally friendly reductive thermal treatment and electrochemical leaching, ACS Sustainable Chem. Eng., 9(2021), No. 20, p. 7053. doi: 10.1021/acssuschemeng.1c00937
|
[22] |
G.H. Jiang, Y.N. Zhang, Q. Meng, et al., Direct regeneration of LiNi0.5Co0.2Mn0.3O2 cathode from spent lithium-ion batteries by the molten salts method, ACS Sustainable Chem. Eng., 8(2020), No. 49, p. 18138. doi: 10.1021/acssuschemeng.0c06514
|
[23] |
Y. Shi, G. Chen, F. Liu, X.J. Yue, and Z. Chen, Resolving the compositional and structural defects of degraded LiNi xCo yMn zO2 particles to directly regenerate high-performance lithium-ion battery cathodes, ACS Energy Lett., 3(2018), No. 7, p. 1683. doi: 10.1021/acsenergylett.8b00833
|
[24] |
C.X. Xing, H.R. Da, P. Yang, et al., Aluminum impurity from current collectors reactivates degraded NCM cathode materials toward superior electrochemical performance, ACS Nano, 17(2023), No. 3, p. 3194. doi: 10.1021/acsnano.3c00270
|
[25] |
Z.Y. Qin, Z.X. Wen, Y.F. Xu, et al., A ternary molten salt approach for direct regeneration of LiNi0.5Co0.2Mn0.3O2 cathode, Small, 18(2022), No. 43, art. No. 2106719. doi: 10.1002/smll.202106719
|
[26] |
J.M. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, 414(2001), p. 359. doi: 10.1038/35104644
|
[27] |
X.H. Zheng, Z.W. Zhu, X. Lin, et al., A mini-review on metal recycling from spent lithium ion batteries, Engineering, 4(2018), No. 3, p. 361. doi: 10.1016/j.eng.2018.05.018
|
[28] |
F. Arshad, L. Li, K. Amin, et al., A comprehensive review of the advancement in recycling the anode and electrolyte from spent lithium ion batteries, ACS Sustainable Chem. Eng., 8(2020), No. 36, p. 13527. doi: 10.1021/acssuschemeng.0c04940
|
[29] |
V.M. Leal, J.S. Ribeiro, E.L.D. Coelho, and M.B.J.G. Freitas, Recycling of spent lithium-ion batteries as a sustainable solution to obtain raw materials for different applications, J. Energy Chem., 79(2023), p. 118. doi: 10.1016/j.jechem.2022.08.005
|
[30] |
J. Ordoñez, E.J. Gago, and A. Girard, Processes and technologies for the recycling and recovery of spent lithium-ion batteries, Renewable Sustainable Energy Rev., 60(2016), p. 195. doi: 10.1016/j.rser.2015.12.363
|
[31] |
N.P. Lebedeva and L. Boon-Brett, Considerations on the chemical toxicity of contemporary Li-ion battery electrolytes and their components, J. Electrochem. Soc., 163(2016), No. 6, p. A821. doi: 10.1149/2.0171606jes
|
[32] |
W.G. Lv, Z.H. Wang, H.B. Cao, Y. Sun, Y. Zhang, and Z. Sun, A critical review and analysis on the recycling of spent lithium-ion batteries, ACS Sustainable Chem. Eng., 6(2018), No. 2, p. 1504. doi: 10.1021/acssuschemeng.7b03811
|
[33] |
X.X. Zhang, L. Li, E.S. Fan, et al., Toward sustainable and systematic recycling of spent rechargeable batteries, Chem. Soc. Rev., 47(2018), No. 19, p. 7239. doi: 10.1039/C8CS00297E
|
[34] |
F.F. Wang, T. Zhang, Y.Q. He, et al., Recovery of valuable materials from spent lithium-ion batteries by mechanical separation and thermal treatment, J. Clean. Prod., 185(2018), p. 646. doi: 10.1016/j.jclepro.2018.03.069
|
[35] |
J. Li, G.X. Wang, and Z.M. Xu, Generation and detection of metal ions and volatile organic compounds (VOCs) emissions from the pretreatment processes for recycling spent lithium-ion batteries, Waste Manage., 52(2016), p. 221. doi: 10.1016/j.wasman.2016.03.011
|
[36] |
G. Granata, F. Pagnanelli, E. Moscardini, Z. Takacova, T. Havlik, and L. Toro, Simultaneous recycling of nickel metal hydride, lithium ion and primary lithium batteries: Accomplishment of European Guidelines by optimizing mechanical pre-treatment and solvent extraction operations, J. Power Sources, 212(2012), p. 205. doi: 10.1016/j.jpowsour.2012.04.016
|
[37] |
L.P. He, S.Y. Sun, Y.Y. Mu, X.F. Song, and J.G. Yu, Recovery of lithium, nickel, cobalt, and manganese from spent lithium-ion batteries using l-tartaric acid as a leachant, ACS Sustainable Chem. Eng., 5(2017), No. 1, p. 714. doi: 10.1021/acssuschemeng.6b02056
|
[38] |
E. Mossali, N. Picone, L. Gentilini, O. Rodrìguez, J.M. Pérez, and M. Colledani, Lithium-ion batteries towards circular economy: A literature review of opportunities and issues of recycling treatments, J. Environ. Manage., 264(2020), art. No. 110500. doi: 10.1016/j.jenvman.2020.110500
|
[39] |
S. Ojanen, M. Lundström, A. Santasalo-Aarnio, and R. Serna-Guerrero, Challenging the concept of electrochemical discharge using salt solutions for lithium-ion batteries recycling, Waste Manage., 76(2018), p. 242. doi: 10.1016/j.wasman.2018.03.045
|
[40] |
X.H. Zhong, W. Liu, J.W. Han, F. Jiao, H.L. Zhu, and W.Q. Qin, Pneumatic separation for crushed spent lithium-ion batteries, Waste Manage., 118(2020), p. 331. doi: 10.1016/j.wasman.2020.08.053
|
[41] |
C. Hanisch, T. Loellhoeffel, J. Diekmann, K.J. Markley, W. Haselrieder, and A. Kwade, Recycling of lithium-ion batteries: A novel method to separate coating and foil of electrodes, J. Clean. Prod., 108(2015), p. 301.
|
[42] |
Y. Ji, C.T. Jafvert, N.N. Zyaykina, and F. Zhao, Decomposition of PVDF to delaminate cathode materials from end-of-life lithium-ion battery cathodes, J. Clean. Prod., 367(2022), art. No. 133112. doi: 10.1016/j.jclepro.2022.133112
|
[43] |
D.A. Ferreira, L.M.Z. Prados, D. Majuste, and M.B. Mansur, Hydrometallurgical separation of aluminium, cobalt, copper and lithium from spent Li-ion batteries, J. Power Sources, 187(2009), No. 1, p. 238. doi: 10.1016/j.jpowsour.2008.10.077
|
[44] |
G.P. Nayaka, K.V. Pai, J. Manjanna, and S.J. Keny, Use of mild organic acid reagents to recover the Co and Li from spent Li-ion batteries, Waste Manage., 51(2016), p. 234. doi: 10.1016/j.wasman.2015.12.008
|
[45] |
J.M. Nan, D.M. Han, and X.X. Zuo, Recovery of metal values from spent lithium-ion batteries with chemical deposition and solvent extraction, J. Power Sources, 152(2005), p. 278. doi: 10.1016/j.jpowsour.2005.03.134
|
[46] |
D.Y. Mu, W.L. Ma, W. Yang, and C.S. Dai, Discharge of spent lithium ion battery and separation and recovery of cathode electrode, Environ. Prot. Chem. Ind., 40(2020), No. 1, p. 63.
|
[47] |
Y. Yang, G.Y. Huang, S.M. Xu, Y.H. He, and X. Liu, Thermal treatment process for the recovery of valuable metals from spent lithium-ion batteries, Hydrometallurgy, 165(2016), p. 390.
|
[48] |
L. Yang, G.X. Xi, and Y.B. Xi, Recovery of Co, Mn, Ni, and Li from spent lithium ion batteries for the preparation of LiNi xCo yMn zO2 cathode materials, Ceram. Int., 41(2015), No. 9, p. 11498. doi: 10.1016/j.ceramint.2015.05.115
|
[49] |
L. Li, R.J. Chen, F. Sun, F. Wu, and J.R. Liu, Preparation of LiCoO2 films from spent lithium-ion batteries by a combined recycling process, Hydrometallurgy, 108(2011), No. 3-4, p. 220. doi: 10.1016/j.hydromet.2011.04.013
|
[50] |
L. Li, J.B. Dunn, X.X. Zhang, L. Gaines, R.J. Chen, F. Wu, and K. Amine, Recovery of metals from spent lithium-ion batteries with organic acids as leaching reagents and environmental assessment, J. Power Sources, 233(2013), p. 180. doi: 10.1016/j.jpowsour.2012.12.089
|
[51] |
Y.N. Xu, D.W. Song, L. Li, et al., A simple solvent method for the recovery of Li xCoO2 and its applications in alkaline rechargeable batteries, J. Power Sources, 252(2014), p. 286. doi: 10.1016/j.jpowsour.2013.11.052
|
[52] |
G.W. Zhang, Y.Q. He, Y. Feng, et al., Enhancement in liberation of electrode materials derived from spent lithium-ion battery by pyrolysis, J. Clean. Prod., 199(2018), p. 62. doi: 10.1016/j.jclepro.2018.07.143
|
[53] |
G. Lombardo, B. Ebin, M.R.S.J. Foreman, B.M. Steenari, and M. Petranikova, Incineration of EV lithium-ion batteries as a pretreatment for recycling–determination of the potential formation of hazardous by-products and effects on metal compounds, J. Hazard. Mater., 393(2020), art. No. 122372. doi: 10.1016/j.jhazmat.2020.122372
|
[54] |
G. Lombardo, B. Ebin, M.R.St.J. Foreman, B.M. Steenari, and M. Petranikova, Chemical transformations in Li-ion battery electrode materials by carbothermic reduction, ACS Sustainable Chem. Eng., 7(2019), No. 16, p. 13668. doi: 10.1021/acssuschemeng.8b06540
|
[55] |
L. Sun and K.Q. Qiu, Vacuum pyrolysis and hydrometallurgical process for the recovery of valuable metals from spent lithium-ion batteries, J. Hazard. Mater., 194(2011), p. 378. doi: 10.1016/j.jhazmat.2011.07.114
|
[56] |
L.P. He, S.Y. Sun, X.F. Song, and J.G. Yu, Recovery of cathode materials and Al from spent lithium-ion batteries by ultrasonic cleaning, Waste Manage., 46(2015), p. 523. doi: 10.1016/j.wasman.2015.08.035
|
[57] |
L. Zhao, X.Y. Zhang, Y.Y. Lu, et al., Recovery of electrode materials from a spent lithium-ion battery through a pyrolysis-coupled mechanical milling method, Energy Fuels, 38(2024), No. 2, p. 1310. doi: 10.1021/acs.energyfuels.3c04038
|
[58] |
B. Huang, Z.F. Pan, X.Y. Su, and L. An, Recycling of lithium-ion batteries: Recent advances and perspectives, J. Power Sources, 399(2018), p. 274. doi: 10.1016/j.jpowsour.2018.07.116
|
[59] |
G.X. Ren, S.W. Xiao, M.Q. Xie, et al., Recovery of valuable metals from spent lithium ion batteries by smelting reduction process based on FeO–SiO2–Al2O3 slag system, Trans. Nonferrous Met. Soc. China, 27(2017), No. 2, p. 450. doi: 10.1016/S1003-6326(17)60051-7
|
[60] |
A. van Bommel and J.R. Dahn, Analysis of the growth mechanism of coprecipitated spherical and dense nickel, manganese, and cobalt-containing hydroxides in the presence of aqueous ammonia, Chem. Mater., 21(2009), No. 8, p. 1500. doi: 10.1021/cm803144d
|
[61] |
X.L. Zeng, J.H. Li, and B.Y. Shen, Novel approach to recover cobalt and lithium from spent lithium-ion battery using oxalic acid, J. Hazard. Mater., 295(2015), p. 112. doi: 10.1016/j.jhazmat.2015.02.064
|
[62] |
Y.L. Yao, M.Y. Zhu, Z. Zhao, B.H. Tong, Y.Q. Fan, and Z.S. Hua, Hydrometallurgical processes for recycling spent lithium-ion batteries: A critical review, ACS Sustainable Chem. Eng., 6(2018), No. 11, p. 13611. doi: 10.1021/acssuschemeng.8b03545
|
[63] |
X.P. Chen, B.L. Fan, L.P. Xu, T. Zhou, and J.R. Kong, An atom-economic process for the recovery of high value-added metals from spent lithium-ion batteries, J. Clean. Prod., 112(2016), p. 3562. doi: 10.1016/j.jclepro.2015.10.132
|
[64] |
Z. Takacova, T. Havlik, F. Kukurugya, and D. Orac, Cobalt and lithium recovery from active mass of spent Li-ion batteries: Theoretical and experimental approach, Hydrometallurgy, 163(2016), p. 9. doi: 10.1016/j.hydromet.2016.03.007
|
[65] |
X.H. Zheng, W.F. Gao, X.H. Zhang, et al., Spent lithium-ion battery recycling–Reductive ammonia leaching of metals from cathode scrap by sodium sulphite, Waste Manage., 60(2017), p. 680. doi: 10.1016/j.wasman.2016.12.007
|
[66] |
R.C. Wang, Y.C. Lin, and S.H. Wu, A novel recovery process of metal values from the cathode active materials of the lithium-ion secondary batteries, Hydrometallurgy, 99(2009), No. 3-4, p. 194. doi: 10.1016/j.hydromet.2009.08.005
|
[67] |
L. Li, Y.F. Bian, X.X. Zhang, et al., Process for recycling mixed-cathode materials from spent lithium-ion batteries and kinetics of leaching, Waste Manage., 71(2018), p. 362. doi: 10.1016/j.wasman.2017.10.028
|
[68] |
L.P. He, S.Y. Sun, X.F. Song, and J.G. Yu, Leaching process for recovering valuable metals from the LiNi1/3Co1/3Mn1/3O2 cathode of lithium-ion batteries, Waste Manage., 64(2017), p. 171. doi: 10.1016/j.wasman.2017.02.011
|
[69] |
N. Vieceli, R. Casasola, G. Lombardo, B. Ebin, and M. Petranikova, Hydrometallurgical recycling of EV lithium-ion batteries: Effects of incineration on the leaching efficiency of metals using sulfuric acid, Waste Manage., 125(2021), p. 192. doi: 10.1016/j.wasman.2021.02.039
|
[70] |
W. Xuan, A. Otsuki, and A. Chagnes, Investigation of the leaching mechanism of NMC 811 (LiNi0.8Mn0.1Co0.1O2) by hydrochloric acid for recycling lithium ion battery cathodes, RSC Adv., 9(2019), No. 66, p. 38612. doi: 10.1039/C9RA06686A
|
[71] |
P.C. Liu, L. Xiao, Y.W. Tang, Y.F. Chen, L.G. Ye, and Y.R. Zhu, Study on the reduction roasting of spent LiNi xCo yMn zO2 lithium-ion battery cathode materials, J. Therm. Anal. Calorim., 136(2019), No. 3, p. 1323. doi: 10.1007/s10973-018-7732-7
|
[72] |
Z.M. Yan, A. Sattar, and Z.S. Li, Priority Lithium recovery from spent Li-ion batteries via carbothermal reduction with water leaching, Resour. Conserv. Recycl., 192(2023), art. No. 106937. doi: 10.1016/j.resconrec.2023.106937
|
[73] |
Y. Ahn, W. Koo, K. Yoo, and R.D. Alorro, Carbothermic reduction roasting of cathode active materials using activated carbon and graphite to enhance the sulfuric-acid-leaching efficiency of nickel and cobalt, Minerals, 12(2022), No. 8, art. No. 1021. doi: 10.3390/min12081021
|
[74] |
L.W. Ma, X.L. Xi, Z.Z. Zhang, and Z. Lyu, Separation and comprehensive recovery of cobalt, nickel, and lithium from spent power lithium-ion batteries, Minerals, 12(2022), No. 4, art. No. 425. doi: 10.3390/min12040425
|
[75] |
X.Q. Meng, J. Hao, H.B. Cao, et al., Recycling of LiNi1/3Co1/3Mn1/3O2 cathode materials from spent lithium-ion batteries using mechanochemical activation and solid-state sintering, Waste Manage., 84(2019), p. 54. doi: 10.1016/j.wasman.2018.11.034
|
[76] |
Y. Shi, M.H. Zhang, Y.S. Meng, and Z. Chen, Ambient-pressure relithiation of degraded Li xNi0.5Co0.2Mn0.3O2 (0 < x < 1) via eutectic solutions for direct regeneration of lithium-ion battery cathodes, Adv. Energy Mater., 9(2019), No. 20, art. No. 1900454. doi: 10.1002/aenm.201900454
|
[77] |
X.H. Zhang, Y.B. Xie, H.B. Cao, F. Nawaz, and Y. Zhang, A novel process for recycling and resynthesizing LiNi1/3Co1/3Mn1/3O2 from the cathode scraps intended for lithium-ion batteries, Waste Manaeg., 34(2014), No. 9, p. 1715. doi: 10.1016/j.wasman.2014.05.023
|
[78] |
S.E. Sloop, L. Crandon, M. Allen, et al., Cathode healing methods for recycling of lithium-ion batteries, Sustain. Mater. Technol., 22(2019), art. No. e00113.
|
[79] |
S.W. Xiao, G.X. Ren, M.Q. Xie, et al., Recovery of valuable metals from spent lithium-ion batteries by smelting reduction process based on MnO–SiO2–Al2O3 slag system, J. Sustain. Metall., 3(2017), No. 4, p. 703. doi: 10.1007/s40831-017-0131-7
|
[80] |
A. Vezzini, Manufacturers, materials and recycling technologies, [in] G. Pistoia, eds., Lithium-Ion Batteries : Advances and Applications, Elsevier, Amsterdam, 2014, p. 529.
|
[81] |
D. Dutta, A. Kumari, R. Panda, et al., Close loop separation process for the recovery of Co, Cu, Mn, Fe and Li from spent lithium-ion batteries, Sep. Purif. Technol., 200(2018), p. 327. doi: 10.1016/j.seppur.2018.02.022
|
[82] |
L.Y. Ren, B. Liu, S.X. Bao, et al., Recovery of Li, Ni, Co and Mn from spent lithium-ion batteries assisted by organic acids: Process optimization and leaching mechanism, Int. J. Miner. Metall. Mater., 31(2024), No. 3, p. 518. doi: 10.1007/s12613-023-2735-1
|
[83] |
H.J. Yu, D.X. Wang, S. Rao, et al., Selective leaching of lithium from spent lithium-ion batteries using sulfuric acid and oxalic acid, Int. J. Miner. Metall. Mater., 31(2024), No. 4, p. 688. doi: 10.1007/s12613-023-2741-3
|
[84] |
L. Li, Y.F. Bian, X.X. Zhang, et al., Economical recycling process for spent lithium-ion batteries and macro- and micro-scale mechanistic study, J. Power Sources, 377(2018), p. 70. doi: 10.1016/j.jpowsour.2017.12.006
|
[85] |
L.Q. Zhuang, C.H. Sun, T. Zhou, H. Li, and A.Q. Dai, Recovery of valuable metals from LiNi0.5Co0.2Mn0.3O2 cathode materials of spent Li-ion batteries using mild mixed acid as leachant, Waste Manage., 85(2019), p. 175. doi: 10.1016/j.wasman.2018.12.034
|
[86] |
J. Jegan Roy, M. Srinivasan, and B. Cao, Bioleaching as an eco-friendly approach for metal recovery from spent NMC-based lithium-ion batteries at a high pulp density, ACS Sustainable Chem. Eng., 9(2021), No. 8, p. 3060. doi: 10.1021/acssuschemeng.0c06573
|
[87] |
Y.Y. Xin, X.M. Guo, S. Chen, J. Wang, F. Wu, and B.P. Xin, Bioleaching of valuable metals Li, Co, Ni and Mn from spent electric vehicle Li-ion batteries for the purpose of recovery, J. Clean. Prod., 116(2016), p. 249. doi: 10.1016/j.jclepro.2016.01.001
|
[88] |
M. Baniasadi, F. Vakilchap, N. Bahaloo-Horeh, S.M. Mousavi, and S. Farnaud, Advances in bioleaching as a sustainable method for metal recovery from e-waste: A review, J. Ind. Eng. Chem., 76(2019), p. 75. doi: 10.1016/j.jiec.2019.03.047
|
[89] |
Y.C. Zhang, W.Q. Wang, Q. Fang, and S.M. Xu, Improved recovery of valuable metals from spent lithium-ion batteries by efficient reduction roasting and facile acid leaching, Waste Manage., 102(2020), p. 847. doi: 10.1016/j.wasman.2019.11.045
|
[90] |
Y.C. Zhang, W.Q. Wang, J.H. Hu, T. Zhang, and S.M. Xu, Stepwise recovery of valuable metals from spent lithium ion batteries by controllable reduction and selective leaching and precipitation, ACS Sustainable Chem. Eng., 8(2020), No. 41, p. 15496. doi: 10.1021/acssuschemeng.0c04106
|
[91] |
C. Yang, J.L. Zhang, B.Y. Yu, H. Huang, Y.Q. Chen, and C.Y. Wang, Recovery of valuable metals from spent LiNi xCo yMn zO2 cathode material via phase transformation and stepwise leaching, Sep. Purif. Technol., 267(2021), art. No. 118609. doi: 10.1016/j.seppur.2021.118609
|
[92] |
J.L. Zhang, G.Q. Liang, C. Yang, J.T. Hu, Y.Q. Chen, and C.Y. Wang, A breakthrough method for the recycling of spent lithium-ion batteries without pre-sorting, Green Chem., 23(2021), No. 21, p. 8434. doi: 10.1039/D1GC02132J
|
[93] |
C. Yang, J.L. Zhang, G.Q. Liang, H. Jin, Y.Q. Chen, and C.Y. Wang, An advanced strategy of “metallurgy before sorting” for recycling spent entire ternary lithium-ion batteries, J. Clean. Prod., 361(2022), art. No. 132268. doi: 10.1016/j.jclepro.2022.132268
|
[94] |
Y.C. Zhang, W.H. Yu, and S.M. Xu, Enhanced leaching of metals from spent lithium-ion batteries by catalytic carbothermic reduction, Rare Met., 42(2023), No. 8, p. 2688. doi: 10.1007/s12598-023-02264-6
|
[95] |
S.B. Ma, F.P. Liu, K.B. Li, et al., Separation of Li and Al from spent ternary Li-ion batteries by in situ aluminum-carbon reduction roasting followed by selective leaching, Hydrometallurgy, 213(2022), art. No. 105941. doi: 10.1016/j.hydromet.2022.105941
|
[96] |
W.Q. Wang, Y.C. Zhang, L. Zhang, and S.M. Xu, Cleaner recycling of cathode material by in situ thermite reduction, J. Clean. Prod., 249(2020), art. No. 119340. doi: 10.1016/j.jclepro.2019.119340
|
[97] |
F.P. Liu, C. Peng, Q.X. Ma, et al., Selective lithium recovery and integrated preparation of high-purity lithium hydroxide products from spent lithium-ion batteries, Sep. Purif. Technol., 259(2021), art. No. 118181. doi: 10.1016/j.seppur.2020.118181
|
[98] |
H. Liu, J.L. Zhang, G.Q. Liang, M. Wang, Y.Q. Chen, and C.Y. Wang, Selective lithium recovery from black powder of spent lithium-ion batteries via sulfation reaction: Phase conversion and impurities influence, Rare Met., 42(2023), No. 7, p. 2350. doi: 10.1007/s12598-023-02290-4
|
[99] |
C. Yang, J.L. Zhang, Z.H. Cao, Q.K. Jing, Y.Q. Chen, and C.Y. Wang, Sustainable and facile process for lithium recovery from spent LiNi xCo yMn zO2 cathode materials via selective sulfation with ammonium sulfate, ACS Sustainable Chem. Eng., 8(2020), No. 41, p. 15732. doi: 10.1021/acssuschemeng.0c05676
|
[100] |
J. Lin, L. Li, E.S. Fan, et al., Conversion mechanisms of selective extraction of lithium from spent lithium-ion batteries by sulfation roasting, ACS Appl. Mater. Interfaces, 12(2020), No. 16, p. 18482. doi: 10.1021/acsami.0c00420
|
[101] |
C. Peng, F.P. Liu, Z.L. Wang, B.P. Wilson, and M. Lundström, Selective extraction of lithium (Li) and preparation of battery grade lithium carbonate (Li2CO3) from spent Li-ion batteries in nitrate system, J. Power Sources, 415(2019), p. 179. doi: 10.1016/j.jpowsour.2019.01.072
|
[102] |
Y. Huang, P.H. Shao, L.M. Yang, et al., Thermochemically driven crystal phase transfer via chlorination roasting toward the selective extraction of lithium from spent LiNi1/3Co1/3Mn1/3O2, Resour. Conserv. Recycl., 174(2021), art. No. 105757. doi: 10.1016/j.resconrec.2021.105757
|
[103] |
G.C. Shi, N. Zhang, J. Cheng, et al., Full closed-loop green regeneration and recycling technology for spent ternary lithium batteries: Hydrogen reduction with sulfuric acid cycle-leaching process, J. Environ. Chem. Eng., 11(2023), No. 6, art. No. 111207. doi: 10.1016/j.jece.2023.111207
|
[104] |
J.H. Zhou, X. Zhou, W.H. Yu, Z. Shang, Y. Yang, and S.M. Xu, Solvothermal strategy for direct regeneration of high-performance cathode materials from spent lithium-ion battery, Nano Energy, 120(2024), art. No. 109145. doi: 10.1016/j.nanoen.2023.109145
|
[105] |
Y.Q. Lu, K.Y. Peng, and L.G. Zhang, Sustainable recycling of electrode materials in spent Li-ion batteries through direct regeneration processes, ACS ES&T Eng., 2(2022), No. 4, p. 586.
|
[106] |
X. Yang, Y.J. Zhang, J. Xiao, et al., Restoring surface defect crystal of Li-lacking LiNi0.6Co0.2Mn0.2O2 material particles toward more efficient recycling of lithium-ion batteries, ACS Sustainable Chem. Eng., 9(2021), No. 50, p. 16997. doi: 10.1021/acssuschemeng.1c05809
|
[107] |
X.L. Yu, S.C. Yu, Z.Z. Yang, et al., Achieving low-temperature hydrothermal relithiation by redox mediation for direct recycling of spent lithium-ion battery cathodes, Energy Storage Mater., 51(2022), p. 54. doi: 10.1016/j.ensm.2022.06.017
|
[108] |
J. Ma, J.X. Wang, K. Jia, et al., Adaptable eutectic salt for the direct recycling of highly degraded layer cathodes, J. Am. Chem. Soc., 144(2022), No. 44, p. 20306. doi: 10.1021/jacs.2c07860
|
[109] |
P.P. Xu, D.H.S. Tan, B.L. Jiao, H.P. Gao, X.L. Yu, and Z. Chen, A materials perspective on direct recycling of lithium-ion batteries: Principles, challenges and opportunities, Adv. Funct. Mater., 33(2023), No. 14, art. No. 2213168. doi: 10.1002/adfm.202213168
|
[110] |
W.S. Chen and H.J. Ho, Recovery of valuable metals from lithium-ion batteries NMC cathode waste materials by hydrometallurgical methods, Metals, 8(2018), No. 5, art. No. 321. doi: 10.3390/met8050321
|
[111] |
P. Meshram, B.D. Pandey, and T.R. Mankhand, Hydrometallurgical processing of spent lithium ion batteries (LIBs) in the presence of a reducing agent with emphasis on kinetics of leaching, Chem. Eng. J., 281(2015), p. 418. doi: 10.1016/j.cej.2015.06.071
|
[112] |
C. Lupi, M. Pasquali, and A. Dell’Era, Nickel and cobalt recycling from lithium-ion batteries by electrochemical processes, Waste Manaeg., 25(2005), No. 2, p. 215. doi: 10.1016/j.wasman.2004.12.012
|
[113] |
X.P. Chen, Y.B. Chen, T. Zhou, D.P. Liu, H. Hu, and S.Y. Fan, Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries, Waste Manage., 38(2015), p. 349. doi: 10.1016/j.wasman.2014.12.023
|
[114] |
F. Vasilyev, S. Virolainen, and T. Sainio, Numerical simulation of counter-current liquid–liquid extraction for recovering Co, Ni and Li from lithium-ion battery leachates of varying composition, Sep. Purif. Technol., 210(2019), p. 530. doi: 10.1016/j.seppur.2018.08.036
|
[115] |
A. Keller, M.W. Hlawitschka, and H.J. Bart, Manganese recycling of spent lithium-ion batteries via solvent extraction, Sep. Purif. Technol., 275(2021), art. No. 119166. doi: 10.1016/j.seppur.2021.119166
|
[116] |
K.F. Zhang, H.L. Liang, X.C. Zhong, H.Y. Cao, R.X. Wang, and Z.Q. Liu, Recovery of metals from sulfate leach solutions of spent ternary lithium-ion batteries by precipitation with phosphate and solvent extraction with P507, Hydrometallurgy, 210(2022), art. No. 105861. doi: 10.1016/j.hydromet.2022.105861
|
[117] |
C.Y. Li, G.F. Dai, R.Y. Liu, et al., Separation and recovery of nickel cobalt manganese lithium from waste ternary lithium-ion batteries, Sep. Purif. Technol., 306(2023), art. No. 122559. doi: 10.1016/j.seppur.2022.122559
|
[118] |
S. Virolainen, M. Fallah Fini, A. Laitinen, and T. Sainio, Solvent extraction fractionation of Li-ion battery leachate containing Li, Ni, and Co, Sep. Purif. Technol., 179(2017), p. 274. doi: 10.1016/j.seppur.2017.02.010
|
[119] |
G. Granata, E. Moscardini, F. Pagnanelli, F. Trabucco, and L. Toro, Product recovery from Li-ion battery wastes coming from an industrial pre-treatment plant: Lab scale tests and process simulations, J. Power Sources, 206(2012), p. 393. doi: 10.1016/j.jpowsour.2012.01.115
|
[120] |
T. Tawonezvi, D. Zide, M. Nomnqa, M. Madondo, L. Petrik, and B.J. Bladergroen, Recovery of Ni xMn yCo z(OH)2 and Li2CO3 from spent Li-ionB cathode leachates using non-Na precipitant-based chemical precipitation for sustainable recycling, Chem. Eng. J. Adv., 17(2024), art. No. 100582. doi: 10.1016/j.ceja.2023.100582
|
[121] |
Y.F. Shen, Recovery Cobalt from discard lithium ion cells, Nonferrous Metals, 54(2002), No. 4, p. 69.
|
[122] |
G. Prabaharan, S.P. Barik, N. Kumar, and L. Kumar, Electrochemical process for electrode material of spent lithium ion batteries, Waste Manage., 68(2017), p. 527. doi: 10.1016/j.wasman.2017.07.007
|
[123] |
M.M. Wang, Q.Y. Tan, L.L. Liu, and J.H. Li, A facile, environmentally friendly, and low-temperature approach for decomposition of polyvinylidene fluoride from the cathode electrode of spent lithium-ion batteries, ACS Sustainable Chem. Eng., 7(2019), No. 15, p. 12799. doi: 10.1021/acssuschemeng.9b01546
|
[124] |
D.M. Song, J.D. Yu, M.M. Wang, Q.Y. Tan, K. Liu, and J.H. Li, Advancing recycling of spent lithium-ion batteries: From green chemistry to circular economy, Energy Storage Mater., 61(2023), art. No. 102870. doi: 10.1016/j.ensm.2023.102870
|
[125] |
Y.L. Liu, D.Y. Mu, R.H. Li, Q.X. Ma, R.J. Zheng, and C.S. Dai, Purification and characterization of reclaimed electrolytes from spent lithium-ion batteries, J. Phys. Chem. C, 121(2017), No. 8, p. 4181. doi: 10.1021/acs.jpcc.6b12970
|
[126] |
D.Y. Mu, J.Q. Liang, J. Zhang, Y. Wang, S. Jin, and C.S. Dai, Exfoliation of active materials synchronized with electrolyte extraction from spent lithium-ion batteries by supercritical CO2, ChemistrySelect, 7(2022), No. 20, art. No. e202200841. doi: 10.1002/slct.202200841
|
[127] |
K. He, Z.Y. Zhang, L.G. Alai, and F.S. Zhang, A green process for exfoliating electrode materials and simultaneously extracting electrolyte from spent lithium-ion batteries, J. Hazard. Mater., 375(2019), p. 43. doi: 10.1016/j.jhazmat.2019.03.120
|
[128] |
G.C. Shi, J. Wang, S.H. Zhang, et al., Green regeneration and high-value utilization technology of the electrolyte from spent lithium-ion batteries, Sep. Purif. Technol., 335(2024), art. No. 126144. doi: 10.1016/j.seppur.2023.126144
|
[129] |
S. Natarajan, K. Subramanyan, R.B. Dhanalakshmi, A.M. Stephan, and V. Aravindan, Regeneration of polyolefin separators from spent Li-ion battery for second life, Batteries Supercaps, 3(2020), No. 7, p. 581. doi: 10.1002/batt.202000024
|
[130] |
M. Zhao, J. Wang, C.B. Chong, X.W. Yu, L.L. Wang, and Z.Q. Shi, An electrospun lignin/polyacrylonitrile nonwoven composite separator with high porosity and thermal stability for lithium-ion batteries, RSC Adv., 5(2015), No. 122, p. 101115. doi: 10.1039/C5RA19371K
|
[131] |
X. Wang, G. Gaustad, C.W. Babbitt, and K. Richa, Economies of scale for future lithium-ion battery recycling infrastructure, Resour. Conserv. Recycl., 83(2014), p. 53. doi: 10.1016/j.resconrec.2013.11.009
|
[132] |
J. Lin, J.W. Wu, E.S. Fan, et al., Environmental and economic assessment of structural repair technologies for spent lithium-ion battery cathode materials, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 942. doi: 10.1007/s12613-022-2430-7
|
[133] |
Q. Yuan, J. Zeng, Q.X. Sui, et al., Thermodynamic and experimental analysis of lithium selectively recovery from spent lithium-ion batteries by in situ carbothermal reduction, J. Environ. Chem. Eng., 11(2023), No. 5, art. No. 111029. doi: 10.1016/j.jece.2023.111029
|
[134] |
Y. Yang, E.G. Okonkwo, G.Y. Huang, S.M. Xu, W. Sun, and Y.H. He, On the sustainability of lithium ion battery industry–A review and perspective, Energy Storage Mater., 36(2021), p. 186. doi: 10.1016/j.ensm.2020.12.019
|
[135] |
L. Lander, T. Cleaver, M. Ali Rajaeifar, et al., Financial viability of electric vehicle lithium-ion battery recycling, iScience, 24(2021), No. 7, art. No. 102787. doi: 10.1016/j.isci.2021.102787
|
[136] |
M.H. Yu, B. Bai, S.Q. Xiong, and X.W. Liao, Evaluating environmental impacts and economic performance of remanufacturing electric vehicle lithium-ion batteries, J. Clean. Prod., 321(2021), art. No. 128935. doi: 10.1016/j.jclepro.2021.128935
|