Cite this article as: |
Junjie Shi, Changle Hou, Jingjing Dong, Dong Chen, and Jianzhong Li, Low-temperature chlorination roasting technology for the simultaneous recovery of valuable metals from spent LiCoO2 cathode material, Int. J. Miner. Metall. Mater., 32(2025), No. 1, pp. 80-91. https://doi.org/10.1007/s12613-024-2898-4 |
石俊杰 E-mail: junjieshi@126.com
Supplementary Information-s12613-024-2898-4.docx |
[1] |
Q. Zhao, W.J. Li, C.J. Liu, M.F. Jiang, H. Saxén, and R. Zevenhoven, Preparation of anode material of lithium-ion battery by spent pickling liquor, J. Sustain. Metall., 9(2023), No. 1, p. 148. doi: 10.1007/s40831-022-00638-1
|
[2] |
H.S. Chen, C.H. Yu, and W. Liu, Energy Storage Industry Research White Paper 2021, China Energy Storage Alliance [2023-12-27], 2022. http://www.esresearch.com.cn/report/?category_id=26
|
[3] |
Q. Zhao, C.J. Liu, X.H. Mei, H. Saxén, and R. Zevenhoven, Research progress of steel slag-based carbon sequestration, Fundam. Res., (2022). DOI: 10.1016/j.fmre.2022.09.023
|
[4] |
Y.M. Li, Q. Zhao, X.H. Mei, C.J. Liu, H. Saxén, and R. Zevenhoven, Effect of Ca/Mg molar ratio on the calcium-based sorbents, Int. J. Miner. Metall. Mater., 30(2023), No. 11, p. 2182. doi: 10.1007/s12613-023-2657-y
|
[5] |
X.H. Mei, Q. Zhao, Y. Min, et al., Dissolution behavior of steelmaking slag for Ca extraction toward CO2 sequestration, J. Environ. Chem. Eng., 11(2023), No. 3, art. No. 110043. doi: 10.1016/j.jece.2023.110043
|
[6] |
F. Arshad, L. Li, K. Amin, et al., A comprehensive review of the advancement in recycling the anode and electrolyte from spent lithium ion batteries, ACS Sustainable Chem. Eng., 8(2020), No. 36, p. 13527. doi: 10.1021/acssuschemeng.0c04940
|
[7] |
J. Lee, K.W. Park, I. Sohn, and S. Lee, Pyrometallurgical recycling of end-of-life lithium-ion batteries, Int. J. Miner. Metall. Mater., 31(2024), No. 7, p. 1554 doi: 10.1007/s12613-024-2907-7
|
[8] |
K.K. Jena, A. AlFantazi, and A.T. Mayyas, Comprehensive review on concept and recycling evolution of lithium-ion batteries (LIBs), Energy Fuels, 35(2021), No. 22, p. 18257. doi: 10.1021/acs.energyfuels.1c02489
|
[9] |
S.B. Qiu, T.Y. Sun, Y. Zhu, C.L. Liu, and J.G. Yu, Direct preparation of water-soluble lithium salts from α-spodumene by roasting with different sulfates, Ind. Eng. Chem. Res., 62(2023), No. 1, p. 685. doi: 10.1021/acs.iecr.2c03744
|
[10] |
B. Dong, Q.H. Tian, Z.P. Xu, D. Li, Q.A. Wang, and X.Y. Guo, Advances in clean extraction of nickel, cobalt and lithium to produce strategic metals for new energy industry, Mater. Rep., 37(2023), No. 22, p. 127.
|
[11] |
H. Fu, J.S. Wang, J.L. Li, B. Wang, B. Ye, and M.L. Li, Spatiotemporal distribution and genesis types of global cobalt resources, Bull. Geol. Sci. Technol., 43(2023), No. 1, p. 1. doi: 10.19509/j.cnki.dzkq.tb20220431
|
[12] |
R.F. Wang, S. Yuan, Y.Z. Liu, P. Gao, and Y.J. Li, Present situation of global manganese ore resources and progress of beneficiation technology, Conserv. Util, Miner. Res., No1(2023), . 14.
|
[13] |
W.G. Lv, Z.H. Wang, H.B. Cao, Y. Sun, Y. Zhang, and Z. Sun, A critical review and analysis on the recycling of spent lithium-ion batteries, ACS Sustainable Chem. Eng., 6(2018), No. 2, p. 1504. doi: 10.1021/acssuschemeng.7b03811
|
[14] |
Z.H. Yan, Q. Zhao, C.Z. Han, X.H. Mei, C.J. Liu, and M.F. Jiang, Effects of iron oxide on crystallization behavior and spatial distribution of spinel in stainless steel slag, Int. J. Miner. Metall. Mater., 31(2024), No. 2, p. 292. doi: 10.1007/s12613-023-2713-7
|
[15] |
L.Y. Ren, B. Liu, S.X. Bao, et al., Recovery of Li, Ni, Co and Mn from spent lithium-ion batteries assisted by organic acids: Process optimization and leaching mechanism, Int. J. Miner. Metall. Mater., 31(2024), No. 3, p. 518. doi: 10.1007/s12613-023-2735-1
|
[16] |
D.X. Wei, W. Wang, L.J. Jiang, et al., Preferentially selective extraction of lithium from spent LiCoO2 cathodes by medium-temperature carbon reduction roasting, Int. J. Miner. Metall. Mater., 31(2024), No. 2, p. 315. doi: 10.1007/s12613-023-2698-2
|
[17] |
Y.N. Yang, Y.J. Yang, C.L. He, et al., Solvent extraction and separation of cobalt from leachate of spent lithium-ion battery cathodes with N263 in nitrite media, Int. J. Miner. Metall. Mater., 30(2023), No. 5, p. 897 doi: 10.1007/s12613-022-2571-8
|
[18] |
F.H. Cui, W.N. Mu, S. Wang, et al., Synchronous extractions of nickel, copper, and cobalt by selective chlorinating roasting and water leaching to low-grade nickel-copper matte, Sep. Purif. Technol., 195(2018), p. 149. doi: 10.1016/j.seppur.2017.11.071
|
[19] |
L.B. Zhou, T.C. Yuan, R.D. Li, Y. Zhong, and X. Lei, Extraction of rubidium from Kaolin clay waste: Process study, Hydrometallurgy, 158(2015), p. 61. doi: 10.1016/j.hydromet.2015.10.010
|
[20] |
K. Liu, J.K. Yang, S. Liang, et al., An emission-free vacuum chlorinating process for simultaneous sulfur fixation and lead recovery from spent lead-acid batteries, Environ. Sci. Technol., 52(2018), No. 4, p. 2235. doi: 10.1021/acs.est.7b05283
|
[21] |
B. Niu, Z.Y. Chen, and Z.M. Xu, Method for recycling tantalum from waste tantalum capacitors by chloride metallurgy, ACS Sustainable Chem. Eng., 5(2017), No. 2, p. 1376. doi: 10.1021/acssuschemeng.6b01839
|
[22] |
S.Y. Liu, S.J. Li, S. Wu, L.J. Wang, and K.C. Chou, A novel method for vanadium slag comprehensive utilization to synthesize Zn–Mn ferrite and Fe–V–Cr alloy, J. Hazard. Mater., 354(2018), p. 99. doi: 10.1016/j.jhazmat.2018.04.061
|
[23] |
S.Y. Liu, L.J. Wang, and K.C. Chou, Selective chlorinated extraction of iron and manganese from vanadium slag and their application to hydrothermal synthesis of MnFe2O4, ACS Sustainable Chem. Eng., 5(2017), No. 11, p. 10588. doi: 10.1021/acssuschemeng.7b02573
|
[24] |
M.K. Jeon and S.W. Kim, Chlorination behavior of LiCoO2, Korean J. Chem. Eng., 39(2022), No. 8, p. 2109. doi: 10.1007/s11814-022-1117-0
|
[25] |
M.K. Jeon, S.W. Kim, M. Oh, H.C. Eun, and K. Lee, Chlorination behavior of Li(Ni1/3Co1/3Mn1/3)O2, Korean J. Chem. Eng., 39(2022), No. 9, p. 2345. doi: 10.1007/s11814-022-1166-4
|
[26] |
H.J. Chen, P.P. Hu, D.H. Wang, and Z.N. Liu, Selective leaching of Li from spent LiNi0.8Co0.1Mn0.1O2 cathode material by sulfation roast with NaHSO4·H2O and water leach, Hydrometallurgy, 210(2022), art. No. 105865. doi: 10.1016/j.hydromet.2022.105865
|
[27] |
Y.C. González, L. Alcaraz, F.J. Alguacil, J. González, L. Barbosa, and F.A. López, Study of the carbochlorination process with CaCl2 and water leaching for the extraction of lithium from spent lithium-ion batteries, Batteries, 9(2022), No. 1, art. No. 12. doi: 10.3390/batteries9010012
|
[28] |
X.Q. Xu, W.N. Mu, T.F. Xiao, et al., A clean and efficient process for simultaneous extraction of Li, Co, Ni and Mn from spent lithium-ion batteries by low-temperature NH4Cl roasting and water leaching, Waste Manage., 153(2022), p. 61. doi: 10.1016/j.wasman.2022.08.022
|
[29] |
J.F. Xiao, B. Niu, Q.M. Song, L. Zhan, and Z.M. Xu, Novel targetedly extracting lithium: An environmental-friendly controlled chlorinating technology and mechanism of spent lithium ion batteries recovery, J. Hazard. Mater., 404(2021), art. No. 123947. doi: 10.1016/j.jhazmat.2020.123947
|
[30] |
J. Yang, Z.L. Zhang, G. Zhang, et al., Process study of chloride roasting and water leaching for the extraction of valuable metals from spent lithium-ion batteries, Hydrometallurgy, 203(2021), art. No. 105638. doi: 10.1016/j.hydromet.2021.105638
|
[31] |
M.M. Wang, Q.Y. Tan, L.L. Liu, and J.H. Li, A facile, environmentally friendly, and low-temperature approach for decomposition of polyvinylidene fluoride from the cathode electrode of spent lithium-ion batteries, ACS Sustainable Chem. Eng., 7(2019), No. 15, p. 12799. doi: 10.1021/acssuschemeng.9b01546
|
[32] |
J. Li, Y.M. Lai, X.Q. Zhu, et al., Pyrolysis kinetics and reaction mechanism of the electrode materials during the spent LiCoO2 batteries recovery process, J. Hazard. Mater., 398(2020), art. No. 122955. doi: 10.1016/j.jhazmat.2020.122955
|
[33] |
G.R. Qu, Y.G. Wei, B. Li, and H. Wang, Chlorination mechanism and kinetics of cathode materials for spent LiCoO2 batteries in the presence of graphite, J. Environ. Chem. Eng., 11(2023), No. 2, art. No. 109361. doi: 10.1016/j.jece.2023.109361
|
[34] |
E.S. Fan, L. Li, J. Lin, et al., Low-temperature molten-salt-assisted recovery of valuable metals from spent lithium-ion batteries, ACS Sustainable Chem. Eng., 7(2019), No. 19, p. 16144. doi: 10.1021/acssuschemeng.9b03054
|
[35] |
C.W. Bale, E. Bélisle, P. Chartrand, et al., FactSage thermochemical software and databases—Recent developments, Calphad, 33(2009), No. 2, p. 295. doi: 10.1016/j.calphad.2008.09.009
|
[36] |
I.H. Jung and M.A. van Ende, Computational thermodynamic calculations: FactSage from CALPHAD thermodynamic database to virtual process simulation, Metall. Mater. Trans. B, 51(2020), No. 5, p. 1851. doi: 10.1007/s11663-020-01908-7
|
[37] |
H.E. Kissinger, Variation of peak temperature with heating rate in differential thermal analysis, J. Res. Natl. Bur. Stand., 57(1956), No. 4, p. 217. doi: 10.6028/jres.057.026
|
[38] |
T. Ozawa, A new method of analyzing thermogravimetric data, Bull. Chem. Soc. Jpn., 38(1965), No. 11, p. 1881. doi: 10.1246/bcsj.38.1881
|
[39] |
J.H. Flynn and L.A. Wall, General treatment of the thermogravimetry of polymers, J. Natl. Res. Bur Stand A Phys. Chem., 70A(1966), No. 6, p. 487. doi: 10.6028/jres.070A.043
|
[40] |
M.J. Starink, The determination of activation energy from linear heating rate experiments: A comparison of the accuracy of isoconversion methods, Thermochim. Acta, 404(2003), No. 1-2, p. 163. doi: 10.1016/S0040-6031(03)00144-8
|
[41] |
J. Orava and A.L. Greer, Kissinger method applied to the crystallization of glass-forming liquids: Regimes revealed by ultra-fast-heating calorimetry, Thermochim. Acta, 603(2015), p. 63. doi: 10.1016/j.tca.2014.06.021
|
[42] |
J.H. Flynn and L.A. Wall, A quick direct method for the determination of activation energy from thermogravimetric data, J. Polym. Sci. Part B, 4(1966), No. 5, . 323.
|
[43] |
T. Akahira and T. Sunose, Method of determining activation deterioration constant of electrical insulating materials, Res. Report. Chiba. Inst. Technol., 16(1971), p. 22.
|
[44] |
L.X. Yang, D.H. Wang, H.J. Chen, X.D. Zhang, Y.S. Yu, and L. Xu, Estimation of $ \Delta H_{{\rm f},298}^{\ominus} $ and $ \Delta {G}_{{\rm f},298}^{\ominus} $ of LiNi xCo yMn zO2 cathode Materials for lithium ion power battery based on the group contribution method, Rare. Met. Mater. Eng., 49(2020), No. 1, p. 161.
|
[45] |
L.X. Yang, D.H. Wang, H.J. Chen, X.D. Zhang, L. Xu, and Y.S. Yu, Heat capacity estimation of LiNi xCo yMn zO2 (x+y+z=1) cathode material based on group contribution method and Kopp’s rule, Chin. J. Rare Met., 44(2020), No. 10, p. 1053.
|
[46] |
J.F. Xiao, B. Niu, and Z.M. Xu, Novel approach for metal separation from spent lithium ion batteries based on dry-phase conversion, J. Clean. Prod., 277(2020), art. No. 122718. doi: 10.1016/j.jclepro.2020.122718
|
[47] |
A.S. Zhu, L. Xu, F.F. Shen, and Z. Cheng, Review on separation technology study of cobalt and nickel, J. Zhejiang Univ. Sci. Technol., 19(2007), No. 3, p. 169.
|
[48] |
O.V. Zhilina, A.N. D’yachenko, V.V. Kozik, and R.I. Kraidenko, Thermal stability of ammonium chlorocobaltates(II), Russ. J. Inorg. Chem., 59(2014), No. 6, p. 536. doi: 10.1134/S0036023614060217
|
[49] |
V.A. Borisov, A.N. D’yachenko, and R.I. Kraidenko, Mechanism of reaction between cobalt(II) oxide and ammonium chloride, Russ. J. Inorg. Chem., 57(2012), No. 7, p. 923. doi: 10.1134/S0036023612070066
|
[50] |
X.H. Meng and D. Deng, A new approach to facilely synthesize crystalline Co2(OH)3Cl microstructures in an eggshell reactor system, CrystEngComm, 19(2017), No. 21, p. 2953. doi: 10.1039/C7CE00379J
|