留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 7
Jul.  2024

图(10)

数据统计

分享

计量
  • 文章访问数:  1517
  • HTML全文浏览量:  220
  • PDF下载量:  57
  • 被引次数: 0
Zhiyu Du, Rongjian Shi, Xingyu Peng, Kewei Gao, and Xiaolu Pang, Review on the design of high-strength and hydrogen-embrittlement-resistant steels, Int. J. Miner. Metall. Mater., 31(2024), No. 7, pp. 1572-1589. https://doi.org/10.1007/s12613-024-2900-1
Cite this article as:
Zhiyu Du, Rongjian Shi, Xingyu Peng, Kewei Gao, and Xiaolu Pang, Review on the design of high-strength and hydrogen-embrittlement-resistant steels, Int. J. Miner. Metall. Mater., 31(2024), No. 7, pp. 1572-1589. https://doi.org/10.1007/s12613-024-2900-1
引用本文 PDF XML SpringerLink
特约综述

高强度抗氢脆钢设计综述


  • 通讯作者:

    石荣建    E-mail: rongjianshi@ustb.edu.cn

    庞晓露    E-mail: pangxl@mater.ustb.edu.cn

文章亮点

  • (1) 详细介绍了两种抗氢脆的策略,通过表面设计和利用纳米析出相作为晶内氢陷阱。这两种方法可以有效减少氢在材料内的扩散,从而显著抑制氢脆的发生。
  • (2) 探讨了包括透射电子显微镜(TEM)、三维原子探针(3DAP)和密度泛函理论(DFT)等先进方法在分析材料微观结构和氢分布上的应用,这些技术的运用提高了对材料微观缺陷和氢陷阱分布的分析精度,增强了对抗氢脆性能的理解。
  • (3) 系统地分析了高强度钢的抗氢脆理论基础,为材料的实际应用和进一步的研究提供了重要的参考和指导。
  • 在碳达峰和碳中和的时代背景下,新型钢铁材料的高强韧化及氢的安全利用迫切需要开发抗氢脆性能优异的高强钢。金属材料的强度、抗氢脆性能难以协同提升是一个交叉的科学、工程难题,开发既能提高强度、又能提高抗氢脆性能的高强韧钢,将对氢能安全利用以及实现钢铁工业碳中和目标具有重要的理论指导和应用价值。本文从高强抗氢脆钢的设计理念出发,总结了抗氢脆表面设计和利用纳米析出相作为晶内氢陷阱的研究现状,为高强抗氢脆钢的设计提出了可行化的建议和展望。
  • Invited Review

    Review on the design of high-strength and hydrogen-embrittlement-resistant steels

    + Author Affiliations
    • Given the carbon peak and carbon neutrality era, there is an urgent need to develop high-strength steel with remarkable hydrogen embrittlement resistance. This is crucial in enhancing toughness and ensuring the utilization of hydrogen in emerging iron and steel materials. Simultaneously, the pursuit of enhanced metallic materials presents a cross-disciplinary scientific and engineering challenge. Developing high-strength, toughened steel with both enhanced strength and hydrogen embrittlement (HE) resistance holds significant theoretical and practical implications. This ensures secure hydrogen utilization and further carbon neutrality objectives within the iron and steel sector. Based on the design principles of high-strength steel HE resistance, this review provides a comprehensive overview of research on designing surface HE resistance and employing nanosized precipitates as intragranular hydrogen traps. It also proposes feasible recommendations and prospects for designing high-strength steel with enhanced HE resistance.
    • loading
    • [1]
      X.F. Li, J. Zhang, E. Akiyama, Y.F. Wang, and Q.Z. Li, Microstructural and crystallographic study of hydrogen-assisted cracking in high strength PSB1080 steel, Int. J. Hydrogen Energy, 43(2018), No. 37, p. 17898. doi: 10.1016/j.ijhydene.2018.07.158
      [2]
      K. Okada, A. Shibata, Y. Takeda, and N. Tsuji, Crystallographic feature of hydrogen-related fracture in 2Mn-0.1C ferritic steel, Int. J. Hydrogen Energy, 43(2018), No. 24, p. 11298. doi: 10.1016/j.ijhydene.2018.05.011
      [3]
      H.Y. Tian, X. Wang, Z.Y. Cui, et al., Electrochemical corrosion, hydrogen permeation and stress corrosion cracking behavior of E690 steel in thiosulfate-containing artificial seawater, Corros. Sci., 144(2018), p. 145. doi: 10.1016/j.corsci.2018.08.048
      [4]
      X. Liu, G.Y. Liu, J.L. Xue, X.D. Wang, and Q.F. Li, Hydrogen as a carrier of renewable energies toward carbon neutrality: State-of-the-art and challenging issues, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 1073. doi: 10.1007/s12613-022-2449-9
      [5]
      J. Venezuela, J. Blanch, A. Zulkiply, et al., Further study of the hydrogen embrittlement of martensitic advanced high-strength steel in simulated auto service conditions, Corros. Sci., 135(2018), p. 120. doi: 10.1016/j.corsci.2018.02.037
      [6]
      T.M. Zhang, W.M. Zhao, T.T. Li, et al., Comparison of hydrogen embrittlement susceptibility of three cathodic protected subsea pipeline steels from a point of view of hydrogen permeation, Corros. Sci., 131(2018), p. 104. doi: 10.1016/j.corsci.2017.11.013
      [7]
      T.M. Zhang, W.M. Zhao, Y.J. Zhao, et al., Effects of surface oxide films on hydrogen permeation and susceptibility to embrittlement of X80 steel under hydrogen atmosphere, Int. J. Hydrogen Energy, 43(2018), No. 6, p. 3353. doi: 10.1016/j.ijhydene.2017.12.170
      [8]
      G. Álvarez, L.B. Peral, C. Rodríguez, T.E. García, and F.J. Belzunce, Hydrogen embrittlement of structural steels: Effect of the displacement rate on the fracture toughness of high-pressure hydrogen pre-charged samples, Int. J. Hydrogen Energy, 44(2019), No. 29, p. 15634. doi: 10.1016/j.ijhydene.2019.03.279
      [9]
      G. Egels, R. Fussik, S. Weber, and W. Theisen, On the role of nitrogen on hydrogen environment embrittlement of high-interstitial austenitic CrMnC(N) steels, Int. J. Hydrogen Energy, 44(2019), No. 60, p. 32323. doi: 10.1016/j.ijhydene.2019.10.109
      [10]
      X.Y. Chen, L.L. Ma, C.S. Zhou, et al., Improved resistance to hydrogen environment embrittlement of warm-deformed 304 austenitic stainless steel in high-pressure hydrogen atmosphere, Corros. Sci., 148(2019), p. 159. doi: 10.1016/j.corsci.2018.12.015
      [11]
      H.S. Noh, J.H. Kang, K.M. Kim, and S.J. Kim, The effects of replacing Ni with Mn on hydrogen embrittlement in Cr–Ni–Mn–N austenitic steels, Corros. Sci., 152(2019), p. 93. doi: 10.1016/j.corsci.2019.03.012
      [12]
      L.R. Queiroga, G.F. Marcolino, M. Santos, G. Rodrigues, C. Eduardo dos Santos, and P. Brito, Influence of machining parameters on surface roughness and susceptibility to hydrogen embrittlement of austenitic stainless steels, Int. J. Hydrogen Energy, 44(2019), No. 54, p. 29027. doi: 10.1016/j.ijhydene.2019.09.139
      [13]
      Y.F. Wang, X.P. Wu, X.F. Li, W.J. Wu, and J.M. Gong, Combined effects of prior plastic deformation and sensitization on hydrogen embrittlement of 304 austenitic stainless steel, Int. J. Hydrogen Energy, 44(2019), No. 13, p. 7014. doi: 10.1016/j.ijhydene.2019.01.122
      [14]
      Y.J. Zhang, W.J. Hui, J.J. Wang, M. Lei, and X.L. Zhao, Enhancing the resistance to hydrogen embrittlement of Al-containing medium-Mn steel through heavy warm rolling, Scripta Mater., 165(2019), p. 15. doi: 10.1016/j.scriptamat.2019.02.009
      [15]
      X.K. Jin, L. Xu, W.C. Yu, K.F. Yao, J. Shi, and M.Q. Wang, The effect of undissolved and temper-induced (Ti, Mo)C precipitates on hydrogen embrittlement of quenched and tempered Cr–Mo steel, Corros. Sci., 166(2020), art. No. 108421. doi: 10.1016/j.corsci.2019.108421
      [16]
      K.S. Kim, J.H. Kang, and S.J. Kim, Nitrogen effect on hydrogen diffusivity and hydrogen embrittlement behavior in austenitic stainless steels, Scripta Mater., 184(2020), p. 70. doi: 10.1016/j.scriptamat.2020.03.038
      [17]
      H. Najam, M. Koyama, B. Bal, E. Akiyama, and K. Tsuzaki, Strain rate and hydrogen effects on crack growth from a Notch in a Fe-high-Mn steel containing 1.1 wt% solute carbon, Int. J. Hydrogen Energy, 45(2020), No. 1, p. 1125. doi: 10.1016/j.ijhydene.2019.10.227
      [18]
      S.H. Yu, S.M. Lee, S. Lee, et al., Effects of lamellar structure on tensile properties and resistance to hydrogen embrittlement of pearlitic steel, Acta Mater., 172(2019), p. 92. doi: 10.1016/j.actamat.2019.04.040
      [19]
      E. Ohaeri, J. Omale, K.M.M. Rahman, and J. Szpunar, Effect of post-processing annealing treatments on microstructure development and hydrogen embrittlement in API 5L X70 pipeline steel, Mater. Charact., 161(2020), art. No. 110124. doi: 10.1016/j.matchar.2020.110124
      [20]
      B.L. Zhang, Q.S. Zhu, C. Xu, et al., Atomic-scale insights on hydrogen trapping and exclusion at incoherent interfaces of nanoprecipitates in martensitic steels, Nat. Commun., 13(2022), No. 1, art. No. 3858. doi: 10.1038/s41467-022-31665-x
      [21]
      E.D. Fan, S.Q. Zhang, D.H. Xie, Q.Y. Zhao, X.G. Li, and Y.H. Huang, Effect of nanosized NbC precipitates on hydrogen-induced cracking of high-strength low-alloy steel, Int. J. Miner. Metall. Mater., 28(2021), No. 2, p. 249. doi: 10.1007/s12613-020-2167-0
      [22]
      X.F. Li, J. Zhang, M.M. Ma, and X.L. Song, Effect of shot peening on hydrogen embrittlement of high strength steel, Int. J. Miner. Metall. Mater., 23(2016), No. 6, p. 667. doi: 10.1007/s12613-016-1279-z
      [23]
      X.F. Guo, S. Zaefferer, F. Archie, and W. Bleck, Hydrogen effect on the mechanical behaviour and microstructural features of a Fe-Mn-C twinning induced plasticity steel, Int. J. Miner. Metall. Mater., 28(2021), No. 5, p. 835. doi: 10.1007/s12613-021-2284-4
      [24]
      R.J. Shi, Z.D. Wang, L.J. Qiao, and X.L. Pang, Effect of in situ nanoparticles on the mechanical properties and hydrogen embrittlement of high-strength steel, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 644. doi: 10.1007/s12613-020-2157-2
      [25]
      M.H. Liu, Z.Y. Liu, C.W. Du, X.Q. Zhan, C.D. Dai, Y. Pan and X.G. Li, Effect of cathodic potential on stress corrosion cracking behavior of 21Cr2NiMo steel in simulated seawater, Int. J. Miner. Metall. Mater., 29(2022), No. 2, p. 263. doi: 10.1007/s12613-020-2199-5
      [26]
      H.C. Yang, H.M. Zhang, C.W. Liu, et al., Effects of defect on the hydrogen embrittlement behavior of X80 pipeline steel in hydrogen-blended natural gas environments, Int. J. Hydrogen Energy, 58(2024), p. 158. doi: 10.1016/j.ijhydene.2024.01.107
      [27]
      C.S. Zhou, Y.Y. Song, Q.Y. Shi, et al., Effect of pre-strain on hydrogen embrittlement of metastable austenitic stainless steel under different hydrogen conditions, Int. J. Hydrogen Energy, 44(2019), No. 47, p. 26036. doi: 10.1016/j.ijhydene.2019.08.046
      [28]
      D. Guedes, L. Cupertino Malheiros, A. Oudriss, et al., The role of plasticity and hydrogen flux in the fracture of a tempered martensitic steel: A new design of mechanical test until fracture to separate the influence of mobile from deeply trapped hydrogen, Acta Mater., 186(2020), p. 133. doi: 10.1016/j.actamat.2019.12.045
      [29]
      Y.F. Wang, B. Sharma, Y.T. Xu, et al., Switching nanoprecipitates to resist hydrogen embrittlement in high-strength aluminum alloys, Nat. Commun., 13(2022), No. 1, art. No. 6860. doi: 10.1038/s41467-022-34628-4
      [30]
      M. Safyari, N. Khossossi, T. Meisel, P. Dey, T. Prohaska, and M. Moshtaghi, New insights into hydrogen trapping and embrittlement in high strength aluminum alloys, Corros. Sci., 223(2023), art. No. 111453. doi: 10.1016/j.corsci.2023.111453
      [31]
      Q. Yan, L.C. Yan, X.L. Pang, and K.W. Gao, Hydrogen trapping and hydrogen embrittlement in 15-5PH stainless steel, Corros. Sci., 205(2022), art. No. 110416. doi: 10.1016/j.corsci.2022.110416
      [32]
      L.C. Huang, D.K. Chen, D.G. Xie, et al., Quantitative tests revealing hydrogen-enhanced dislocation motion in α-iron, Nat. Mater., 22(2023), No. 6, p. 710. doi: 10.1038/s41563-023-01537-w
      [33]
      C.S. Zhou, B.G. Ye, Y.Y. Song, T.C. Cui, P. Xu, and L. Zhang, Effects of internal hydrogen and surface-absorbed hydrogen on the hydrogen embrittlement of X80 pipeline steel, Int. J. Hydrogen Energy, 44(2019), No. 40, p. 22547. doi: 10.1016/j.ijhydene.2019.04.239
      [34]
      I.M. Robertson, P. Sofronis, A. Nagao, et al., Hydrogen embrittlement understood, Metall. Mater. Trans. B, 46(2015), No. 3, p. 1085. doi: 10.1007/s11663-015-0325-y
      [35]
      A. Panda, L. Davis, P. Ramkumar, and M. Amirthalingam, The role of retained austenite against hydrogen embrittlement and white etching area formation in bearing steel under dynamic loading, Int. J. Hydrogen Energy, 58(2024), p. 1359. doi: 10.1016/j.ijhydene.2024.01.155
      [36]
      M.L. Martin, M. Dadfarnia, A. Nagao, S. Wang, and P. Sofronis, Enumeration of the hydrogen-enhanced localized plasticity mechanism for hydrogen embrittlement in structural materials, Acta Mater., 165(2019), p. 734. doi: 10.1016/j.actamat.2018.12.014
      [37]
      P. Novak, R. Yuan, B.P. Somerday, P. Sofronis, and R.O. Ritchie, A statistical, physical-based, micro-mechanical model of hydrogen-induced intergranular fracture in steel, J. Mech. Phys. Solids, 58(2010), No. 2, p. 206. doi: 10.1016/j.jmps.2009.10.005
      [38]
      Z. Wang, Z.L. Li, X. Zhu, et al., Correlational research of microstructure characteristics and hydrogen induced cracking in hot-rolled Fe–6Mn–0.2C–3Al steels, Corros. Sci., 228(2024), art. No. 111811. doi: 10.1016/j.corsci.2023.111811
      [39]
      R. Kirchheim, On the solute-defect interaction in the framework of a defactant concept, Int. J. Mater. Res., 100(2009), p. 483. doi: 10.3139/146.110065
      [40]
      M. Wasim, M.B. Djukic, and T.D. Ngo, Influence of hydrogen-enhanced plasticity and decohesion mechanisms of hydrogen embrittlement on the fracture resistance of steel, Eng. Fail. Anal., 123(2021), art. No. 105312. doi: 10.1016/j.engfailanal.2021.105312
      [41]
      S.K. Dwivedi and M. Vishwakarma, Effect of hydrogen in advanced high strength steel materials, Int. J. Hydrogen Energy, 44(2019), No. 51, p. 28007. doi: 10.1016/j.ijhydene.2019.08.149
      [42]
      S.K. Dwivedi and M. Vishwakarma, Hydrogen embrittlement in different materials: A review, Int. J. Hydrogen Energy, 43(2018), No. 46, p. 21603. doi: 10.1016/j.ijhydene.2018.09.201
      [43]
      B.F. Brown and C.D. Beachem, A study of the stress factor in corrosion cracking by use of the pre-cracked cantilever beam specimen, Corros. Sci., 5(1965), No. 11, p. 745. doi: 10.1016/S0010-938X(65)80002-6
      [44]
      M. Nagumo, Function of hydrogen in embrittlement of high-strength steels, ISIJ Int., 41(2001), No. 6, p. 590. doi: 10.2355/isijinternational.41.590
      [45]
      M. Nagumo, Hydrogen related failure of steels–A new aspect, Mater. Sci. Technol., 20(2004), No. 8, p. 940. doi: 10.1179/026708304225019687
      [46]
      R. Matsumoto, S. Seki, S. Taketomi, and N. Miyazaki, Hydrogen-related phenomena due to decreases in lattice defect energies—Molecular dynamics simulations using the embedded atom method potential with pseudo-hydrogen effects, Comput. Mater. Sci., 92(2014), p. 362. doi: 10.1016/j.commatsci.2014.05.029
      [47]
      K.N. Solanki, D.K. Ward, and D.J. Bammann, A nanoscale study of dislocation nucleation at the crack tip in the nickel-hydrogen system, Metall. Mater. Trans. A, 42(2011), No. 2, p. 340. doi: 10.1007/s11661-010-0451-8
      [48]
      M.B. Djukic, G.M. Bakic, V. Sijacki Zeravcic, A. Sedmak, and B. Rajicic, The synergistic action and interplay of hydrogen embrittlement mechanisms in steels and iron: Localized plasticity and decohesion, Eng. Fract. Mech., 216(2019), art. No. 106528. doi: 10.1016/j.engfracmech.2019.106528
      [49]
      H.W. Lee, M.B. Djukic, and C. Basaran, Modeling fatigue life and hydrogen embrittlement of bcc steel with unified mechanics theory, Int. J. Hydrogen Energy, 48(2023), No. 54, p. 20773. doi: 10.1016/j.ijhydene.2023.02.110
      [50]
      A. Nagao, M. Dadfarnia, B.P. Somerday, P. Sofronis, and R.O. Ritchie, Hydrogen-enhanced-plasticity mediated decohesion for hydrogen-induced intergranular and “quasi-cleavage” fracture of lath martensitic steels, J. Mech. Phys. Solids, 112(2018), p. 403. doi: 10.1016/j.jmps.2017.12.016
      [51]
      S. Wang, M.L. Martin, P. Sofronis, S. Ohnuki, N. Hashimoto, and I.M. Robertson, Hydrogen-induced intergranular failure of iron, Acta Mater., 69(2014), p. 275. doi: 10.1016/j.actamat.2014.01.060
      [52]
      Z.Q. Zhong, Z.L. Tian, and C. Yang, Application of EBSD technique in research of hydrogen embrittlement mechanism for high strength martensite stainless steel, Trans. Mater. Heat Treat., 36(2015), No. 2, p. 77.
      [53]
      I.J. Park, K.H. Jeong, J.G. Jung, C.S. Lee, and Y.K. Lee, The mechanism of enhanced resistance to the hydrogen delayed fracture in Al-added Fe–18Mn–0.6C twinning-induced plasticity steels, Int. J. Hydrogen Energy, 37(2012), No. 12, p. 9925. doi: 10.1016/j.ijhydene.2012.03.100
      [54]
      D.K. Han, S.K. Lee, S.J. Noh, S.K. Kim, and D.W. Suh, Effect of aluminium on hydrogen permeation of high-manganese twinning-induced plasticity steel, Scripta Mater., 99(2015), p. 45. doi: 10.1016/j.scriptamat.2014.11.023
      [55]
      J.E. Jin and Y.K. Lee, Effects of Al on microstructure and tensile properties of C-bearing high Mn TWIP steel, Acta Mater., 60(2012), No. 4, p. 1680. doi: 10.1016/j.actamat.2011.12.004
      [56]
      J.H. Ryu, S.K. Kim, C.S. Lee, D.W. Suh, and H.K.D.H. Bhadeshia, Effect of aluminium on hydrogen-induced fracture behaviour in austenitic Fe–Mn–C steel, Proc. R. Soc. A., 469(2013), No. 2149, art. No. 20120458. doi: 10.1098/rspa.2012.0458
      [57]
      S.M. Lee, I.J. Park, J.G. Jung, and Y.K. Lee, The effect of Si on hydrogen embrittlement of Fe–18Mn–0.6C–xSi twinning-induced plasticity steels, Acta Mater., 103(2016), p. 264. doi: 10.1016/j.actamat.2015.10.015
      [58]
      P.P. Bai, S.W. Li, J. Cheng, et al., Improvement of hydrogen permeation barrier performance by iron sulphide surface films, Int. J. Miner. Metall. Mater., 30(2023), No. 9, p. 1792. doi: 10.1007/s12613-022-2593-2
      [59]
      J.S. Park, H.R. Bang, S.P. Jung, and S.J. Kim, Effect of plastic strain on corrosion-induced hydrogen infusion and embrittlement behaviors of Zn-coated ultra-high strength steel sheet, Surf. Coat. Technol., 477(2024), art. No. 130335. doi: 10.1016/j.surfcoat.2023.130335
      [60]
      F. Käufer, A. Quade, A. Kruth, and H. Kahlert, Magnetron sputtering as a versatile tool for precise synthesis of hybrid iron oxide–graphite nanomaterial for electrochemical applications, Nanomaterials, 14(2024), No. 3, art. No. 252. doi: 10.3390/nano14030252
      [61]
      D. Iadicicco, S. Bassini, M. Vanazzi, et al., Efficient hydrogen and deuterium permeation reduction in Al2O3 coatings with enhanced radiation tolerance and corrosion resistance, Nucl. Fusion, 58(2018), No. 12, art. No. 126007. doi: 10.1088/1741-4326/aadd1d
      [62]
      F. García Ferré, E. Bertarelli, A. Chiodoni, et al., The mechanical properties of a nanocrystalline Al2O3/a-Al2O3 composite coating measured by nanoindentation and Brillouin spectroscopy, Acta Mater., 61(2013), No. 7, p. 2662. doi: 10.1016/j.actamat.2013.01.050
      [63]
      Y. Hatano, K. Zhang, and K. Hashizume, Fabrication of ZrO2 coatings on ferritic steel by wet-chemical methods as a tritium permeation barrier, Phys. Scr., 2011(2011), No. T145, art. No. 014044.
      [64]
      Z.X. Lu, Q.Y. Zhou, Y.H. Ling, B.R. Hou, J.P. Wang, and Z.J. Zhang, Preparation and hydrogen penetration performance of TiO2/TiC x composite coatings, Int. J. Hydrogen Energy, 45(2020), No. 27, p. 14048. doi: 10.1016/j.ijhydene.2020.03.049
      [65]
      M. Tamura and T. Eguchi, Nanostructured thin films for hydrogen-permeation barrier, J. Vac. Sci. Technol. A, 33(2015), No. 4, art. No. 041503. doi: 10.1116/1.4919736
      [66]
      V. Nemanič, P.J. McGuiness, N. Daneu, B. Zajec, Z. Siketić, and W. Waldhauser, Hydrogen permeation through silicon nitride films, J. Alloys Compd., 539(2012), p. 184. doi: 10.1016/j.jallcom.2012.05.110
      [67]
      K.J. Shi, X.Y. Meng, S. Xiao, et al., MXene coatings: Novel hydrogen permeation barriers for pipe steels, Nanomaterials, 11(2021), No. 10, art. No. 2737.
      [68]
      K.J. Shi, S. Xiao, Q.D. Ruan, et al., Hydrogen permeation behavior and mechanism of multi-layered graphene coatings and mitigation of hydrogen embrittlement of pipe steel, Appl. Surf. Sci., 573(2022), art. No. 151529. doi: 10.1016/j.apsusc.2021.151529
      [69]
      H. Yang, Z.M. Shao, W. Wang, X. Ji, and C.J. Li, A composite coating of GO-Al2O3 for tritium permeation barrier, Fusion Eng. Des., 156(2020), art. No. 111689. doi: 10.1016/j.fusengdes.2020.111689
      [70]
      H.H. Jeon, S.M. Lee, J. Han, I.J. Park, and Y.K. Lee, The effect of Zn coating layers on the hydrogen embrittlement of hot-dip galvanized twinning-induced plasticity steel, Corros. Sci., 111(2016), p. 267. doi: 10.1016/j.corsci.2016.05.014
      [71]
      J. Yoo, S. Kim, M.C. Jo, et al., Effects of Al–Si coating structures on bendability and resistance to hydrogen embrittlement in 1.5-GPa-grade hot-press-forming steel, Acta Mater., 225(2022), art. No. 117561. doi: 10.1016/j.actamat.2021.117561
      [72]
      H.K.D.H. Bhadeshia, Prevention of hydrogen embrittlement in steels, ISIJ Int., 56(2016), No. 1, p. 24. doi: 10.2355/isijinternational.ISIJINT-2015-430
      [73]
      S.C. Marques, A.V. Castilho, and D.S. dos Santos, Effect of alloying elements on the hydrogen diffusion and trapping in high entropy alloys, Scripta Mater., 201(2021), art. No. 113957. doi: 10.1016/j.scriptamat.2021.113957
      [74]
      Z.C. Xie, Y.J. Wang, C.S. Lu, and L.H. Dai, Sluggish hydrogen diffusion and hydrogen decreasing stacking fault energy in a high-entropy alloy, Mater. Today Commun., 26(2021), art. No. 101902. doi: 10.1016/j.mtcomm.2020.101902
      [75]
      D.V. Sidelev, E.B. Kashkarov, M.S. Syrtanov, and V.P. Krivobokov, Nickel-chromium (Ni–Cr) coatings deposited by magnetron sputtering for accident tolerant nuclear fuel claddings, Surf. Coat. Technol., 369(2019), p. 69. doi: 10.1016/j.surfcoat.2019.04.057
      [76]
      J. Yamabe, S. Matsuoka, and Y. Murakami, Surface coating with a high resistance to hydrogen entry under high-pressure hydrogen-gas environment, Int. J. Hydrogen Energy, 38(2013), No. 24, p. 10141. doi: 10.1016/j.ijhydene.2013.05.152
      [77]
      L.Y. Zheng, H.P. Li, J. Zhou, et al., Layer-structured Cr/CrxN coating via electroplating-based nitridation achieving high deuterium resistance as the hydrogen permeation barrier, J. Adv. Ceram., 11(2022), No. 12, p. 1944. doi: 10.1007/s40145-022-0658-3
      [78]
      M.C. Jo, M.C. Jo, J. Yoo, et al., Strong resistance to hydrogen embrittlement via surface shielding in multi-layered austenite/martensite steel sheets, Mater. Sci. Eng. A, 800(2021), art. No. 140319. doi: 10.1016/j.msea.2020.140319
      [79]
      P.Y. Liu, B.N. Zhang, R.M. Niu, et al., Engineering metal–carbide hydrogen traps in steels, Nat. Commun., 15(2024), No. 1, art. No. 724. doi: 10.1038/s41467-024-45017-4
      [80]
      S. Echeverri Restrepo, D. Di Stefano, M. Mrovec, and A.T. Paxton, Density functional theory calculations of iron - vanadium carbide interfaces and the effect of hydrogen, Int. J. Hydrogen Energy, 45(2020), No. 3, p. 2382. doi: 10.1016/j.ijhydene.2019.11.102
      [81]
      F.G. Wei and K. Tsuzaki, Quantitative analysis on hydrogen trapping of TiC particles in steel, Metall. Mater. Trans. A, 37(2006), No. 2, p. 331. doi: 10.1007/s11661-006-0004-3
      [82]
      Z.X. Peng, J. Liu, F. Huang, Q. Hu, C.S. Cao, and S.P. Hou, Comparative study of non-metallic inclusions on the critical size for HIC initiation and its influence on hydrogen trapping, Int. J. Hydrogen Energy, 45(2020), No. 22, p. 12616. doi: 10.1016/j.ijhydene.2020.02.131
      [83]
      K. Ohsawa, K. Eguchi, H. Watanabe, M. Yamaguchi, and M. Yagi, Configuration and binding energy of multiple hydrogen atoms trapped in monovacancy in bcc transition metals, Phys. Rev. B, 85(2012), No. 9, art. No. 094102. doi: 10.1103/PhysRevB.85.094102
      [84]
      A.J. Kumnick and H.H. Johnson, Deep trapping states for hydrogen in deformed iron, Acta Metall., 28(1980), No. 1, p. 33. doi: 10.1016/0001-6160(80)90038-3
      [85]
      S.T. Picraux, Defect trapping of gas atoms in metals, Nucl. Instrum. Meth., 182-183(1981), p. 413. doi: 10.1016/0029-554X(81)90715-1
      [86]
      T. Depover and K. Verbeken, The detrimental effect of hydrogen at dislocations on the hydrogen embrittlement susceptibility of Fe–C–X alloys: An experimental proof of the HELP mechanism, Int. J. Hydrogen Energy, 43(2018), No. 5, p. 3050. doi: 10.1016/j.ijhydene.2017.12.109
      [87]
      D.E. Jiang and E.A. Carter, Diffusion of interstitial hydrogen into and through bcc Fe from first principles, Phys. Rev. B, 70(2004), No. 6, art. No. 064102. doi: 10.1103/PhysRevB.70.064102
      [88]
      R. Silverstein, B. Glam, D. Eliezer, D. Moreno, and S. Eliezer, Dynamic deformation of hydrogen charged austenitic-ferritic steels: Hydrogen trapping mechanisms, and simulations, J. Alloys Compd., 731(2018), p. 1238. doi: 10.1016/j.jallcom.2017.10.142
      [89]
      A. Ramasubramaniam, M. Itakura, M. Ortiz, and E.A. Carter, Effect of atomic scale plasticity on hydrogen diffusion in iron: Quantum mechanically informed and on-the-fly kinetic Monte Carlo simulations, J. Mater. Res., 23(2008), No. 10, p. 2757. doi: 10.1557/JMR.2008.0340
      [90]
      M.Q. Wang, E. Akiyama, and K. Tsuzaki, Effect of hydrogen and stress concentration on the Notch tensile strength of AISI 4135 steel, Mater. Sci. Eng. A, 398(2005), No. 1-2, p. 37. doi: 10.1016/j.msea.2005.03.008
      [91]
      M. Itakura, H. Kaburaki, M. Yamaguchi, and T. Okita, The effect of hydrogen atoms on the screw dislocation mobility in bcc iron: A first-principles study, Acta Mater., 61(2013), No. 18, p. 6857. doi: 10.1016/j.actamat.2013.07.064
      [92]
      I.M. Bernstein, The effect of hydrogen on the deformation of iron, Scr. Metall., 8(1974), No. 4, p. 343. doi: 10.1016/0036-9748(74)90136-7
      [93]
      M.Q. Wang, E. Akiyama, and K. Tsuzaki, Effect of hydrogen on the fracture behavior of high strength steel during slow strain rate test, Corros. Sci., 49(2007), No. 11, p. 4081. doi: 10.1016/j.corsci.2007.03.038
      [94]
      E.J. Song, H.K.D.H. Bhadeshia, and D.W. Suh, Effect of hydrogen on the surface energy of ferrite and austenite, Corros. Sci., 77(2013), p. 379. doi: 10.1016/j.corsci.2013.07.043
      [95]
      S. Yamasaki and T. Takahashi, Evaluation method of delayed fracture property of high strength steels, Tetsu-to-Hagane, 83(1997), No. 7, p. 454. doi: 10.2355/tetsutohagane1955.83.7_454
      [96]
      T. Depover and K. Verbeken, Evaluation of the effect of V4C3 precipitates on the hydrogen induced mechanical degradation in Fe–C–V alloys, Mater. Sci. Eng. A, 675(2016), p. 299. doi: 10.1016/j.msea.2016.08.053
      [97]
      W.A. Counts, C. Wolverton, and R. Gibala, First-principles energetics of hydrogen traps in α-Fe: Point defects, Acta Mater., 58(2010), No. 14, p. 4730. doi: 10.1016/j.actamat.2010.05.010
      [98]
      T. Depover and K. Verbeken, The effect of TiC on the hydrogen induced ductility loss and trapping behavior of Fe–C–Ti alloys, Corros. Sci., 112(2016), p. 308. doi: 10.1016/j.corsci.2016.07.013
      [99]
      J.M. Lee, T. Lee, Y.J. Kwon, D.J. Mun, J.Y. Yoo, and C.S. Lee, Effects of vanadium carbides on hydrogen embrittlement of tempered martensitic steel, Met. Mater. Int., 22(2016), No. 3, p. 364. doi: 10.1007/s12540-016-5631-7
      [100]
      A. Turk, D. San Martin, P.E.J. Rivera-Díaz-del-Castillo, and E.I. Galindo-Nava, Correlation between vanadium carbide size and hydrogen trapping in ferritic steel, Scripta Mater., 152(2018), p. 112.
      [101]
      D. Di Stefano, R. Nazarov, T. Hickel, J. Neugebauer, M. Mrovec, and C. Elsässer, First-principles investigation of hydrogen interaction with TiC precipitates in α-Fe, Phys. Rev. B, 93(2016), No. 18, art. No. 184108. doi: 10.1103/PhysRevB.93.184108
      [102]
      Y.A. Du, L. Ismer, J. Rogal, T. Hickel, J. Neugebauer, and R. Drautz, First-principles study on the interaction of H interstitials with grain boundaries in α- and γ-Fe, Phys. Rev. B, 84(2011), No. 14, art. No. 144121. doi: 10.1103/PhysRevB.84.144121
      [103]
      A.T. Paxton, From quantum mechanics to physical metallurgy of steels, Mater. Sci. Technol., 30(2014), No. 9, p. 1063. doi: 10.1179/1743284714Y.0000000521
      [104]
      F.G. Wei and K. Tsuzaki, Hydrogen absorption of incoherent TiC particles in iron from environment at high temperatures, Metall. Mater. Trans. A, 35(2004), No. 10, p. 3155. doi: 10.1007/s11661-004-0060-5
      [105]
      E.J. McEniry, T. Hickel, and J. Neugebauer, Hydrogen behaviour at twist{110}grain boundaries in α-Fe, Phil. Trans. R. Soc. A., 375(2017), No. 2098, art. No. 20160402. doi: 10.1098/rsta.2016.0402
      [106]
      B.Q. Cheng, A.T. Paxton, and M. Ceriotti, Hydrogen diffusion and trapping in α-iron: The role of quantum and anharmonic fluctuations, Phys. Rev. Lett., 120(2018), No. 22, art. No. 225901. doi: 10.1103/PhysRevLett.120.225901
      [107]
      J.A. Ronevich, B.C. De Cooman, J.G. Speer, E. De Moor, and D.K. Matlock, Hydrogen effects in prestrained transformation induced plasticity steel, Metall. Mater. Trans. A, 43(2012), No. 7, p. 2293. doi: 10.1007/s11661-011-1075-3
      [108]
      M. Koyama, H. Springer, S.V. Merzlikin, K. Tsuzaki, E. Akiyama, and D. Raabe, Hydrogen embrittlement associated with strain localization in a precipitation-hardened Fe–Mn–Al–C light weight austenitic steel, Int. J. Hydrogen Energy, 39(2014), No. 9, p. 4634.
      [109]
      W. Krieger, S.V. Merzlikin, A. Bashir, A. Szczepaniak, H. Springer, and M. Rohwerder, Spatially resolved localization and characterization of trapped hydrogen in zero to three dimensional defects inside ferritic steel, Acta Mater., 144(2018), p. 235. doi: 10.1016/j.actamat.2017.10.066
      [110]
      E. Wallaert, T. Depover, M. Arafin, and K. Verbeken, Thermal desorption spectroscopy evaluation of the hydrogen-trapping capacity of NbC and NbN precipitates, Metall. Mater. Trans. A, 45(2014), No. 5, p. 2412. doi: 10.1007/s11661-013-2181-1
      [111]
      R.J. Shi, Y.L. Wang, S.P. Lu, et al., Enhancing the hydrogen embrittlement resistance with cementite/VC multiple precipitates in high-strength steel, Mater. Sci. Eng. A, 874(2023), art. No. 145084. doi: 10.1016/j.msea.2023.145084
      [112]
      F.T. Dong, J. Venezuela, H.X. Li, et al., Effect of vanadium and rare earth microalloying on the hydrogen embrittlement susceptibility of a Fe–18Mn–0.6C TWIP steel studied using the linearly increasing stress test, Corros. Sci., 185(2021), art. No. 109440. doi: 10.1016/j.corsci.2021.109440
      [113]
      J. Takahashi, K. Kawakami, and T. Tarui, Direct observation of hydrogen-trapping sites in vanadium carbide precipitation steel by atom probe tomography, Scripta Mater., 67(2012), No. 2, p. 213. doi: 10.1016/j.scriptamat.2012.04.022
      [114]
      Y.S. Chen, D. Haley, S.S.A. Gerstl, et al., Direct observation of individual hydrogen atoms at trapping sites in a ferritic steel, Science, 355(2017), No. 6330, p. 1196. doi: 10.1126/science.aal2418
      [115]
      J. Takahashi, K. Kawakami, and Y. Kobayashi, Origin of hydrogen trapping site in vanadium carbide precipitation strengthening steel, Acta Mater., 153(2018), p. 193. doi: 10.1016/j.actamat.2018.05.003
      [116]
      B. Malard, B. Remy, C. Scott, et al., Hydrogen trapping by VC precipitates and structural defects in a high strength Fe–Mn–C steel studied by small-angle neutron scattering, Mater. Sci. Eng. A, 536(2012), p. 110. doi: 10.1016/j.msea.2011.12.080
      [117]
      J.Y. Fang, C. Xu, Y. Li, R.Z. Peng, and X.J. Fu, Effect of grain orientation and interface coherency on the hydrogen trapping ability of TiC precipitates in a ferritic steel, Mater. Lett., 308(2022), art. No. 131281. doi: 10.1016/j.matlet.2021.131281
      [118]
      T. Jun, K. Kazuto, K. Yukiko, and T. Toshimi, The first direct observation of hydrogen trapping sites in TiC precipitation-hardening steel through atom probe tomography, Scripta Mater., 63(2010), No. 3, p. 261. doi: 10.1016/j.scriptamat.2010.03.012
      [119]
      S.Q. Zhang, J.F. Wan, Q.Y. Zhao, et al., Dual role of nanosized NbC precipitates in hydrogen embrittlement susceptibility of lath martensitic steel, Corros. Sci., 164(2020), art. No. 108345. doi: 10.1016/j.corsci.2019.108345
      [120]
      M. Ohnuma, J.I. Suzuki, F.G. Wei, and K. Tsuzaki, Direct observation of hydrogen trapped by NbC in steel using small-angle neutron scattering, Scripta Mater., 58(2008), No. 2, p. 142. doi: 10.1016/j.scriptamat.2007.09.026
      [121]
      Y.S. Chen, H.Z. Lu, J.T. Liang, et al., Observation of hydrogen trapping at dislocations, grain boundaries, and precipitates, Science, 367(2020), No. 6474, p. 171. doi: 10.1126/science.aaz0122
      [122]
      R.J. Shi, Y. Ma, Z.D. Wang, et al., Atomic-scale investigation of deep hydrogen trapping in NbC/α-Fe semi-coherent interfaces, Acta Mater., 200(2020), p. 686. doi: 10.1016/j.actamat.2020.09.031
      [123]
      F.G. Wei, T. Hara, and K. Tsuzaki, Nano-preciptates design with hydrogen trapping character in high strength steel, [in] Advanced Steels : The Recent Scenario in Steel Science and Technology, Springer, Berlin, Heidelberg, 2011, p. 87.
      [124]
      A. Nagao, K. Hayashi, K. Oi, and S. Mitao, Effect of uniform distribution of fine cementite on hydrogen embrittlement of low carbon martensitic steel plates, ISIJ Int., 52(2012), No. 2, p. 213. doi: 10.2355/isijinternational.52.213
      [125]
      X.Y. Cheng, Z.J. Zhang, W.Q. Liu, and X.J. Wang, Direct observation of hydrogen-trapping sites in newly developed high-strength mooring chain steel by atom probe tomography, Prog. Nat. Sci. Mater. Int., 23(2013), No. 4, p. 446. doi: 10.1016/j.pnsc.2013.06.005
      [126]
      X. Zhu, W. Li, T.Y. Hsu, S. Zhou, L. Wang, and X.J. Jin, Improved resistance to hydrogen embrittlement in a high-strength steel by quenching–partitioning–tempering treatment, Scripta Mater., 97(2015), p. 21. doi: 10.1016/j.scriptamat.2014.10.030
      [127]
      Y.H. Fan, B. Zhang, H.L. Yi, et al., The role of reversed austenite in hydrogen embrittlement fracture of S41500 martensitic stainless steel, Acta Mater., 139(2017), p. 188. doi: 10.1016/j.actamat.2017.08.011
      [128]
      J.L. Lee and J.Y. Lee, Hydrogen trapping in AISI 4340 steel, Met. Sci., 17(1983), No. 9, p. 426. doi: 10.1179/030634583790420619
      [129]
      S. Frappart, A. Oudriss, X. Feaugas, et al., Hydrogen trapping in martensitic steel investigated using electrochemical permeation and thermal desorption spectroscopy, Scripta Mater., 65(2011), No. 10, p. 859. doi: 10.1016/j.scriptamat.2011.07.042
      [130]
      A.V. Verkhovykh, A.A. Mirzoev, G.E. Ruzanova, D.A. Mirzaev, and K.Y. Okishev, Interaction of hydrogen atoms with vacancies and divacancies in bcc iron, Mater. Sci. Forum, 870(2016), p. 550. doi: 10.4028/www.scientific.net/MSF.870.550
      [131]
      A. Drexler, T. Depover, S. Leitner, K. Verbeken, and W. Ecker, Microstructural based hydrogen diffusion and trapping models applied to Fe–C–X alloys, J. Alloys Compd., 826(2020), art. No. 154057. doi: 10.1016/j.jallcom.2020.154057
      [132]
      M. Nagumo and K. Takai, The predominant role of strain-induced vacancies in hydrogen embrittlement of steels: Overview, Acta Mater., 165(2019), p. 722. doi: 10.1016/j.actamat.2018.12.013
      [133]
      Y.C. Lin, D. Chen, M.H. Chiang, G.J. Cheng, H.C. Lin, and H.W. Yen, Response of hydrogen desorption and hydrogen embrittlement to precipitation of nanometer-sized copper in tempered martensitic low-carbon steel, JOM, 71(2019), No. 4, p. 1349. doi: 10.1007/s11837-019-03330-0
      [134]
      Y. Ma, Y.F. Shi, H.Y. Wang, et al., A first-principles study on the hydrogen trap characteristics of coherent nano-precipitates in α-Fe, Int. J. Hydrogen Energy, 45(2020), No. 51, p. 27941. doi: 10.1016/j.ijhydene.2020.07.123
      [135]
      A. Drexler, T. Depover, K. Verbeken, and W. Ecker, Model-based interpretation of thermal desorption spectra of Fe–C–Ti alloys, J. Alloys Compd., 789(2019), p. 647. doi: 10.1016/j.jallcom.2019.03.102
      [136]
      F.G. Wei, T. Hara, and K. Tsuzaki, High-resolution transmission electron microscopy study of crystallography and morphology of TiC precipitates in tempered steel, Philos. Mag., 84(2004), No. 17, p. 1735. doi: 10.1080/14786430310001638762
      [137]
      Y.C. Lin, I.E. McCarroll, Y.T. Lin, W.C. Chung, J.M. Cairney, and H.W. Yen, Hydrogen trapping and desorption of dual precipitates in tempered low-carbon martensitic steel, Acta Mater., 196(2020), p. 516. doi: 10.1016/j.actamat.2020.06.046
      [138]
      H. Zhao, P. Chakraborty, D. Ponge, et al., Hydrogen trapping and embrittlement in high-strength Al alloys, Nature, 602(2022), No. 7897, p. 437. doi: 10.1038/s41586-021-04343-z

    Catalog


    • /

      返回文章
      返回