留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 7
Jul.  2024

图(15)  / 表(5)

数据统计

分享

计量
  • 文章访问数:  510
  • HTML全文浏览量:  177
  • PDF下载量:  73
  • 被引次数: 0
Shengchao Duan, Min Joo Lee, Yao Su, Wangzhong Mu, Dong Soo Kim,  and Joo Hyun Park, Evolution of nonmetallic inclusions in 80-t 9CrMoCoB large-scale ingots during electroslag remelting process, Int. J. Miner. Metall. Mater., 31(2024), No. 7, pp. 1525-1539. https://doi.org/10.1007/s12613-024-2905-9
Cite this article as:
Shengchao Duan, Min Joo Lee, Yao Su, Wangzhong Mu, Dong Soo Kim,  and Joo Hyun Park, Evolution of nonmetallic inclusions in 80-t 9CrMoCoB large-scale ingots during electroslag remelting process, Int. J. Miner. Metall. Mater., 31(2024), No. 7, pp. 1525-1539. https://doi.org/10.1007/s12613-024-2905-9
引用本文 PDF XML SpringerLink
研究论文

电渣重熔制备80 t级 9CrMoCoB 大型耐热钢铸锭中非金属夹杂物的演变


  • 通讯作者:

    Joo Hyun Park    E-mail: basicity@hanyang.ac.kr

文章亮点

  • (1) 通过理论计算和实验分析了夹杂物的形成和去除机理。
  • (2) 采用电化学萃取法和透射电镜准确分析了以硫化物或氧化物为核心析出的一次碳化物的三维形貌、成分和类型。
  • (3) 分析了电渣锭中形成 的Al2O3夹杂物。
  • 在1823 K下进行了CaF2–CaO–Al2O3–SiO2–B2O3熔渣和9CrMoCoB钢的实验室实验,以研究电渣重熔(ESR)过程钢中硼(B)元素的氧化行为。通过离子与分子共存理论(IMCT)和Wagner模型分别计算了渣中SiO2和B2O3的活度以及钢液中Si和B的活度。热力学计算结果表明,与CaF2–CaO–Al2O3–SiO2–B2O3熔渣中的其他成分相比,渣中SiO2和B2O3对钢中平衡B含量有显著影响。热力学计算结果得到了实验室实验和工业实验数据的验证,并且得到了电渣重熔制备大型9CrMoCoB的渣系成分。工业实验在85 t电渣炉上进行,自耗电极直径为1.6 m、电渣锭直径2.15 m、质量为85 t。通过在自耗电极和电渣锭不同位置取样分析制备大型耐热钢铸锭过程夹杂物去除和转变机理。结果发现,自耗电极中主要夹杂物有以Al2O3为核心的CaO–Al2O3–SiO2–MnO液态夹杂物和以Al2O3和MnS为核心的M23C6碳化物。在重熔铸锭中只能观察到纯Al2O3夹杂物和以Al2O3为核心的M23C6碳化物。通过电解萃取法确定该碳化物的成分包含C、Fe、Cr、W和Mo元素,透射电镜确定该碳化物类型可以为Cr21.34Fe1.66C6、(Cr19W4)C6、Cr18.4Mo4.6C6和Cr16Fe5Mo2C6。以上结果说明,在电渣重熔过程中,在电极端部位置液态CaO–Al2O3–SiO2–MnO氧化物和MnS硫化物分别被炉渣吸附或发生分解通过熔渣脱硫反应去除。电渣锭中Al2O3夹杂物的生成主要由于钢液中Al含量的增加导致的。本文对夹杂物的生成和转变机理进行了详细的热力学分析。
  • Research Article

    Evolution of nonmetallic inclusions in 80-t 9CrMoCoB large-scale ingots during electroslag remelting process

    + Author Affiliations
    • In combination with theoretical calculations, experiments were conducted to investigate the evolution behavior of nonmetallic inclusions (NMIs) during the manufacture of large-scale heat-resistant steel ingots using 9CrMoCoB heat-resistant steel and CaF2–CaO–Al2O3–SiO2–B2O3 electroslag remelting (ESR)-type slag in an 80-t industrial ESR furnace. The main types of NMI in the consumable electrode comprised pure alumina, a multiphase oxide consisting of an Al2O3 core and liquid CaO–Al2O3–SiO2–MnO shell, and M23C6 carbides with an MnS core. The Al2O3 and MnS inclusions had higher precipitation temperatures than the M23C6-type carbide under equilibrium and nonequilibrium solidification processes. Therefore, inclusions can act as nucleation sites for carbide layer precipitation. The ESR process completely removed the liquid CaO–Al2O3–SiO2–MnO oxide and MnS inclusion with a carbide shell, and only the Al2O3 inclusions and Al2O3 core with a carbide shell occupied the remelted ingot. The M23C6-type carbides in steel were determined as Cr23C6 based on the analysis of transmission electron microscopy results. The substitution of Cr with W, Fe, or/and Mo in the Cr23C6 lattice caused slight changes in the lattice parameter of the Cr23C6 carbide. Therefore, Cr21.34Fe1.66C6, (Cr19W4)C6, Cr18.4Mo4.6C6, and Cr16Fe5Mo2C6 can match the fraction pattern of Cr23C6 carbide. The Al2O3 inclusions in the remelted ingot formed due to the reduction of CaO, SiO2, and MnO components in the liquid inclusion. The increased Al content in liquid steel or the higher supersaturation degree of Al2O3 precipitation in the remelted ingot than that in the electrode can be attributed to the evaporation of CaF2 and the increase in CaO content in the ESR-type slag.
    • loading
    • [1]
      T. Horiuchi, M. Igarashi, and F. Abe, Improved utilization of added B in 9Cr heat-resistant steels containing W, ISIJ Int., 42(2002), p. S67. doi: 10.2355/isijinternational.42.Suppl_S67
      [2]
      F. Masuyama, History of power plants and progress in heat resistant steels, ISIJ Int., 41(2001), No. 6, p. 612. doi: 10.2355/isijinternational.41.612
      [3]
      W. Yan, W. Wang, Y.Y. Shan, K. Yang, and W. Sha, 9-12Cr Heat-Resistant Steels, Springer International Publishing, Cham, 2015.
      [4]
      F. Abe, Precipitate design for creep strengthening of 9% Cr tempered martensitic steel for ultra-supercritical power plants, Sci. Technol. Adv. Mater., 9(2008), No. 1, art. No. 013002. doi: 10.1088/1468-6996/9/1/013002
      [5]
      X.B. Hu, L. Li, X.C. Wu, and M. Zhang, Coarsening behavior of M23C6 carbides after ageing or thermal fatigue in AISI H13 steel with niobium, Int. J. Fatigue, 28(2006), No. 3, p. 175. doi: 10.1016/j.ijfatigue.2005.06.042
      [6]
      X.S. Zhou, C.X. Liu, L.M. Yu, Y.C. Liu, and H.J. Li, Phase transformation behavior and microstructural control of high-Cr martensitic/ferritic heat-resistant steels for power and nuclear plants: A review, J. Mater. Sci. Technol., 31(2015), No. 3, p. 235. doi: 10.1016/j.jmst.2014.12.001
      [7]
      Y.H. Zhou, Y.C. Liu, X.S. Zhou, et al., Precipitation and hot deformation behavior of austenitic heat-resistant steels: A review, J. Mater. Sci. Technol., 33(2017), No. 12, p. 1448. doi: 10.1016/j.jmst.2017.01.025
      [8]
      R.L. Klueh, Elevated temperature ferritic and martensitic steels and their application to future nuclear reactors, Int. Mater. Rev., 50(2005), No. 5, p. 287. doi: 10.1179/174328005X41140
      [9]
      Z. Liu, X.T. Wang, and C. Dong, Effect of boron on G115 martensitic heat resistant steel during aging at 650°C, Mater. Sci. Eng. A, 787(2020), art. No. 139529. doi: 10.1016/j.msea.2020.139529
      [10]
      M. Sharma, I. Ortlepp, and W. Bleck, Boron in heat-treatable steels: A review, Steel Res. Int., 90(2019), No. 11, art. No. 1900133. doi: 10.1002/srin.201900133
      [11]
      D.S. Kim, G.J. Lee, M.B. Lee, J.I. Hur, and J.W. Lee, Manufacturing of 9CrMoCoB steel of large ingot with homogeneity by ESR process, IOP Conf. Ser. Mater. Sci. Eng., 143(2016), art. No. 012002. doi: 10.1088/1757-899X/143/1/012002
      [12]
      L.Z. Peng, Z.H. Jiang, and X. Geng, Design of ESR slag for remelting 9CrMoCoB steel through experiments and thermodynamic calculations, Calphad, 70(2020), art. No. 101782. doi: 10.1016/j.calphad.2020.101782
      [13]
      S.C. Duan and J.H. Park, Comparison of oxidation behavior of various reactive elements in alloys during electroslag remelting (ESR) process: An overview, ISIJ Int., 62(2022), No. 8, p. 1561. doi: 10.2355/isijinternational.ISIJINT-2022-015
      [14]
      S.C. Duan, M.J. Lee, D.S. Kim, and J.H. Park, Oxidation behavior of boron in 9CrMoCoB steel by CaF2–CaO–Al2O3–SiO2–B2O3 electroslag remelting (ESR) type slag, J. Mater. Res. Technol., 17(2022), p. 574. doi: 10.1016/j.jmrt.2022.01.033
      [15]
      J.H. Park and Y. Kang, Inclusions in stainless steels–A review, Steel Res. Int., 88(2017), No. 12, art. No. 1700130. doi: 10.1002/srin.201700130
      [16]
      J.H. Park and H. Todoroki, Control of MgO·Al2O3 spinel inclusions in stainless steels, ISIJ Int., 50(2010), No. 10, p. 1333. doi: 10.2355/isijinternational.50.1333
      [17]
      J.H. Park and L.F. Zhang, Kinetic modeling of nonmetallic inclusions behavior in molten steel: A review, Metall. Mater. Trans. B, 51(2020), No. 6, p. 2453. doi: 10.1007/s11663-020-01954-1
      [18]
      S.F. Yang, S.L. Yang, J.L. Qu, et al., Inclusions in wrought superalloys: A review, J. Iron Steel Res. Int., 28(2021), No. 8, p. 921. doi: 10.1007/s42243-021-00617-y
      [19]
      K.O. Findley, J.L. Evans, and A. Saxena, A critical assessment of fatigue crack nucleation and growth models for Ni- and Ni, Fe-based superalloys, Int. Mater. Rev., 56(2011), No. 1, p. 49. doi: 10.1179/095066010X12777205875796
      [20]
      R.T. Holt and W. Wallace, Impurities and trace elements in nickel-base superalloys, Int. Met. Rev., 21(1976), No. 1, p. 1. doi: 10.1179/imr.1976.21.1.1
      [21]
      X.Y. Gao, L. Zhang, X.H. Qu, X.W. Chen, and Y.F. Luan, Effect of interaction of refractories with Ni-based superalloy on inclusions during vacuum induction melting, Int. J. Miner. Metall. Mater., 27(2020), No. 11, p. 1551. doi: 10.1007/s12613-020-2098-9
      [22]
      J. Wang, L.Z. Wang, J.Q. Li, C.Y. Chen, S.F. Yang, and X. Li, Effects of aluminum and titanium additions on the formation of nonmetallic inclusions in nickel-based superalloys, J. Alloys Compd., 906(2022), art. No. 164281. doi: 10.1016/j.jallcom.2022.164281
      [23]
      A.J. Shi, Z. Wang, C.B. Shi, L. Guo, C.Q. Guo, and Z.C. Guo, Supergravity-induced separation of oxide and nitride inclusions from inconel 718 superalloy melt, ISIJ Int., 60(2020), No. 2, p. 205. doi: 10.2355/isijinternational.ISIJINT-2019-321
      [24]
      K.A. Al-Jarba and G.E. Fuchs, Effect of carbon additions on the as-cast microstructure and defect formation of a single crystal Ni-based superalloy, Mater. Sci. Eng. A, 373(2004), No. 1-2, p. 255. doi: 10.1016/j.msea.2004.01.030
      [25]
      L.Z. He, Q. Zheng, X.F. Sun, et al., Effect of carbides on the creep properties of a Ni-base superalloy M963, Mater. Sci. Eng. A, 397(2005), No. 1-2, p. 297. doi: 10.1016/j.msea.2005.02.038
      [26]
      L.R. Liu, T. Jin, N.R. Zhao, X.F. Sun, H.R. Guan, and Z.Q. Hu, Formation of carbides and their effects on stress rupture of a Ni-base single crystal superalloy, Mater. Sci. Eng. A, 361(2003), No. 1-2, p. 191. doi: 10.1016/S0921-5093(03)00517-3
      [27]
      S.L. Yang, S.F. Yang, W. Liu, J.S. Li, J.G. Gao, and Y. Wang, Microstructure, segregation and precipitate evolution in directionally solidified GH4742 superalloy, Int. J. Miner. Metall. Mater., 30(2023), No. 5, p. 939. doi: 10.1007/s12613-022-2549-6
      [28]
      V.T. Ha and W.S. Jung, Niobium carbo-nitride precipitation behavior in a high nitrogen 15Cr-15Ni heat resistant austenitic stainless steel, Met. Mater. Int., 17(2011), No. 5, p. 713. doi: 10.1007/s12540-011-1003-5
      [29]
      W.R. Sun, S.R. Guo, D.Z. Lu, and Z.O. Hu, Effect of sulfur on the solidification and segregation in Inconel 718 alloy, Mater. Lett., 31(1997), No. 3-6, p. 195. doi: 10.1016/S0167-577X(96)00266-2
      [30]
      E.P. Whelan and M.S. Grzedzielski, H-phase sulphocarbides and sulphur in nickel-base superalloys, Met. Technol., 1(1974), No. 1, p. 186. doi: 10.1179/030716974803288040
      [31]
      X.C. Chen, C.B. Shi, H.J. Guo, F. Wang, H. Ren, and D. Feng, Investigation of oxide inclusions and primary carbonitrides in inconel 718 superalloy refined through electroslag remelting process, Metall. Mater. Trans. B, 43(2012), No. 6, p. 1596. doi: 10.1007/s11663-012-9723-6
      [32]
      X. Shi, S.C. Duan, W.S. Yang, M.T. Mao, H.J. Guo, and J. Guo, Effects of remelting current on structure, composition, microsegregation, and inclusions in inconel 718 electroslag remelting ingots, Metall. Mater. Trans. B, 50(2019), No. 6, p. 3072. doi: 10.1007/s11663-019-01685-y
      [33]
      S.C. Duan, X. Shi, F. Wang, et al., Investigation of desulfurization of Inconel 718 superalloys by ESR type slags with different TiO2 content, J. Mater. Res. Technol., 8(2019), No. 3, p. 2508. doi: 10.1016/j.jmrt.2019.01.027
      [34]
      K. Sakuraya, H. Okada, and F. Abe, BN type inclusions formed in high Cr ferritic heat resistant steel, Energy Mater., 1(2006), No. 3, p. 158. doi: 10.1179/174892406X160624
      [35]
      Y. Li, C. Liu, T. Zhang, M. Jiang, and C. Peng, Inclusions modification in heat resistant steel containing rare earth elements, Ironmaking Steelmaking, 45(2018), No. 1, p. 76. doi: 10.1080/03019233.2016.1241518
      [36]
      L. Zhang, Y.H. Hou, Y.C. Li, Z.L. Xiang, and E.G. Wang, Size and type of inclusions in Fe–Cr–Co Heat–resistant steel and elevated-temperature strength under the effect of electromagnetic stirring, ISIJ Int., 59(2019), No. 6, p. 1049. doi: 10.2355/isijinternational.ISIJINT-2018-667
      [37]
      Z.B. Li, Electroslag Metallurgy Theory and Practice, Metallurgical Industry Press, Beijing, 2010, p. 66.
      [38]
      Z.H. Jiang, Electroslag Metallurgy, Science Press, Beijing, 2015.
      [39]
      A. Kharicha, E. Karimi-Sibaki, M.H. Wu, A. Ludwig, and J. Bohacek, Review on modeling and simulation of electroslag remelting, Steel Res. Int., 89(2018), No. 1, art. No. 1700100. doi: 10.1002/srin.201700100
      [40]
      J. Fu and J. Zhu, Changes in oxide inclusions during electroslag remelting, Acta Metall. Sin., 7(1964), No. 3, p. 250.
      [41]
      A. Mitchell and M. Bell, On the origin of oxide inclusions in ingots made by the electroslag process, Can. Metall. Q., 11(1972), No. 2, p. 363. doi: 10.1179/cmq.1972.11.2.363
      [42]
      Y.W. Dong, Z.H. Jiang, Y.L. Cao, A. Yu, and D. Hou, Effect of slag on inclusions during electroslag remelting process of die steel, Metall. Mater. Trans. B, 45(2014), No. 4, p. 1315. doi: 10.1007/s11663-014-0070-7
      [43]
      Q. Wang, R.T. Wang, Z. He, G.Q. Li, B.K. Li, and H.B. Li, Numerical analysis of inclusion motion behavior in electroslag remelting process, Int. J. Heat Mass Transf., 125(2018), p. 1333. doi: 10.1016/j.ijheatmasstransfer.2018.04.168
      [44]
      X.C. Huang, B.K. Li, Z.Q. Liu, M.Z. Li, and F.S. Qi, Modeling of fluid flow, heat transfer and inclusion removal in electroslag remelting process with a rotating electrode, Int. J. Heat Mass Transf., 163(2020), art. No. 120473. doi: 10.1016/j.ijheatmasstransfer.2020.120473
      [45]
      S.J. Wang, C.B. Shi, Y.J. Liang, X.X. Wan, and X. Zhu, Evolution and formation of Non-metallic inclusions during electroslag remelting of a heat-resistant steel for ultra-supercritical power plants, Metall. Mater. Trans. B, 53(2022), No. 5, p. 3095. doi: 10.1007/s11663-022-02589-0
      [46]
      Y. Zhao, C.B. Shi, S.J. Wang, P. Ren, and J. Li, Reoxidation of liquid steel and evolution of inclusions during protective atmosphere electroslag remelting of Ce-containing heat-resistant stainless steel, J. Iron Steel Res. Int., (2023). DOI: 10.1007/s42243-023-01092-3
      [47]
      J.H. Park, D.J. Kim, and D.J. Min, Characterization of nonmetallic inclusions in high-manganese and aluminum-alloyed austenitic steels, Metall. Mater. Trans. A, 43(2012), No. 7, p. 2316. doi: 10.1007/s11661-012-1088-6
      [48]
      J.H. Park and D.J. Min, Thermodynamics of fluoride vaporisation from slags containing CaF2 at 1773 K, Steel Res. Int., 75(2004), No. 12, p. 807. doi: 10.1002/srin.200405846
      [49]
      Y. Liu, Y. Wang, G.Q. Li, C. Yuan, R. Lu, and B.K. Li, Investigation on the structure, fluoride vaporization and crystallization behavior of CaF2–CaO–Al2O3–(SiO2) slag for electroslag remelting, J. Therm. Anal. Calorim., 139(2020), No. 2, p. 923. doi: 10.1007/s10973-019-08518-9
      [50]
      C.H. Dai, X.P. Zhang, and L. Shui, A new method for measuring activities in slags containing a volatile component, Metall. Mater. Trans. B, 26(1995), No. 3, p. 651. doi: 10.1007/BF02653887
      [51]
      A. Mitchell and S. Joshi, The thermal characteristics of the electroslag process, Metall. Trans., 4(1973), No. 3, p. 631. doi: 10.1007/BF02643068
      [52]
      R. Schneider, V. Wiesinger, S. Gelder, A. Mitchell, and D. David, Effect of different remelting parameters on slag temperature and energy consumption during ESR, ISIJ Int., 62(2022), No. 6, p. 1199. doi: 10.2355/isijinternational.ISIJINT-2021-498
      [53]
      D. Hou, Z.H. Jiang, Y.W. Dong, W. Gong, Y.L. Cao, and H.B. Cao, Effect of slag composition on the oxidation kinetics of alloying elements during electroslag remelting of stainless steel: Part-2 control of titanium and aluminum content, ISIJ Int., 57(2017), No. 8, p. 1410. doi: 10.2355/isijinternational.ISIJINT-2017-148
      [54]
      C. Xuan, H. Shibata, S. Sukenaga, P.G. Jönsson, and K. Nakajima, Wettability of Al2O3, MgO and Ti2O3 by liquid iron and steel, ISIJ Int., 55(2015), No. 9, p. 1882. doi: 10.2355/isijinternational.ISIJINT-2014-820
      [55]
      K. Mukai, Z.S. Li, and M. Zeze, Surface tension and wettability of liquid Fe–16 mass%Cr–O alloy with alumina, Mater. Trans., 43(2002), No. 7, p. 1724. doi: 10.2320/matertrans.43.1724
      [56]
      J.Y. Choi and H.G. Lee, Wetting of solid Al2O3 with molten CaO-Al2O3-SiO2, ISIJ Int., 43(2003), No. 9, p. 1348. doi: 10.2355/isijinternational.43.1348
      [57]
      B.J. Monaghan, H. Abdeyazdan, N. Dogan, M.A. Rhamdhani, R.J. Longbottom, and M.W. Chapman, Effect of slag composition on wettability of oxide inclusions, ISIJ Int., 55(2015), No. 9, p. 1834. doi: 10.2355/isijinternational.ISIJINT-2015-168
      [58]
      H. Ohta and H. Suito, Dispersion behavior of MgO, ZrO2, Al2O3, CaO–Al2O3 and MnO–SiO2 deoxidation particles during solidification of Fe–10mass%Ni alloy, ISIJ Int., 46(2006), No. 1, p. 22. doi: 10.2355/isijinternational.46.22
      [59]
      T. Furukawa, N. Saito, and K. Nakashima, Evaluation of interfacial energy between molten Fe and Fe–18% Cr–9% Ni alloy and non-metallic inclusion-type oxides, ISIJ Int., 61(2021), No. 9, p. 2381. doi: 10.2355/isijinternational.ISIJINT-2020-696
      [60]
      X.P. Guo, M. Tan, T. Li, et al., Formation mechanisms and three-dimensional characterization of composite inclusion of MnS–Al2O3 in high speed wheel steel, Mater. Charact., 197(2023), art. No. 112669. doi: 10.1016/j.matchar.2023.112669
      [61]
      Y.F. Qi, J. Li, C.B. Shi, H. Wang, and D.L. Zheng, Precipitation and growth of MnS inclusion in an austenitic hot-work die steel during ESR solidification process, Metall. Res. Technol., 116(2019), No. 3, art. No. 322. doi: 10.1051/metal/2018114
      [62]
      S.C. Duan, J. Kang, J. Cho, M. Lee, W.Z. Mu, and J.H. Park, Manufacturing an ultra-low-sulfur CoCrFeMnNi high-entropy alloy by slagging through induction melting with ferroalloys feedstock, J. Alloys Compd., 928(2022), art. No. 167080. doi: 10.1016/j.jallcom.2022.167080
      [63]
      J. Zeng, C.Y. Zhu, W.L. Wang, and X. Li, In situ observation of the MnS precipitation behavior in high-sulfur microalloyed steel under different cooling rates, Metall. Mater. Trans. B, 51(2020), No. 6, p. 2522. doi: 10.1007/s11663-020-01946-1
      [64]
      Z.L. Xue, N. Li, L. Wang, S.Q. Song, D.M. Liu, and A. Huang, A coupling model predicting the precipitation and growth of MnS inclusions in U75V high-carbon heavy rail steel, Metall. Mater. Trans. B, 52(2021), No. 6, p. 3860. doi: 10.1007/s11663-021-02301-8
      [65]
      D.M. Liu, Z.L. Xue, and S.Q. Song, Effect of manganese on the formation mechanism of nonmetallic inclusions in Fe–xMn–7Al–0.7C lightweight steel, Steel Res. Int., 94(2023), No. 1, art. No. 2200551. doi: 10.1002/srin.202200551
      [66]
      J.H. Shin and J.H. Park, Modification of inclusions in molten steel by Mg-Ca transfer from top slag: Experimental confirmation of the ‘refractory-slag-metal-inclusion (ReSMI)’ multiphase reaction model, Metall. Mater. Trans. B, 48(2017), No. 6, p. 2820. doi: 10.1007/s11663-017-1080-z
      [67]
      C.B. Shi, H. Wang, and J. Li, Effects of reoxidation of liquid steel and slag composition on the chemistry evolution of inclusions during electroslag remelting, Metall. Mater. Trans. B, 49(2018), No. 4, p. 1675. doi: 10.1007/s11663-018-1296-6
      [68]
      M.G. González-Solórzano, R. Morales, J.R. Ávila, C.R. Muñiz-Valdés, and A.N. Bastida, Alumina nucleation, growth kinetics, and morphology: A review, Steel Res. Int., 94(2023), No. 9, art. No. 2200678. doi: 10.1002/srin.202200678
      [69]
      Q.F. Shu, V.V. Visuri, T. Alatarvas, and T. Fabritius, Model for inclusion precipitation kinetics during solidification of steel applications in MnS and TiN inclusions, Metall. Mater. Trans. B, 51(2020), No. 6, p. 2905. doi: 10.1007/s11663-020-01955-0
      [70]
      D.L. Zheng, G.J. Ma, J. Li, et al., Effect of cerium on the primary carbides and inclusions in electroslag remelted M35 high speed steel, J. Mater. Res. Technol., 24(2023), p. 8252. doi: 10.1016/j.jmrt.2023.05.044
      [71]
      M. Yoshizawa, M. Igarashi, and T. Nishizawa, Effect of tungsten on the Ostwald ripening of M23C6 carbides in martensitic heat resistant steel, Tetsu-to-Hagane, 91(2005), No. 2, p. 272. doi: 10.2355/tetsutohagane1955.91.2_272
      [72]
      X. Xiao, G.Q. Liu, B.F. Hu, J.S. Wang, and W.B. Ma, Coarsening behavior for M23C6 carbide in 12%Cr-reduced activation ferrite/martensite steel: Experimental study combined with DICTRA simulation, J. Mater. Sci., 48(2013), No. 16, p. 5410. doi: 10.1007/s10853-013-7334-5
      [73]
      J.P. Sanhueza, D. Rojas, J. García, et al., Computational modeling of the effect of B and W in the phase transformation of M23C6 carbides in 9 to 12 pct Cr martensitic/ferritic steels, Mater. Res. Express, 6(2019), No. 11, art. No. 1165d3. doi: 10.1088/2053-1591/ab500c
      [74]
      M.E. Fraser and A. Mitchell, Mass transfer in the electroslag process. Part1: Mass-transfer model, Ironmaking Steelmaking, 3(1976), No. 5, p. 279.
      [75]
      M. Valdez, G.S. Shannon, and S. Sridhar, The ability of slags to absorb solid oxide inclusions, ISIJ Int., 46(2006), No. 3, p. 450. doi: 10.2355/isijinternational.46.450
      [76]
      Y. Wen, Q. Shu, Y. Lin, and T. Fabritius, Effect of SiO2 content and mass ratio of CaO to Al2O3 on the viscosity and structure of CaO–Al2O3–B2O3–SiO2 slags, ISIJ Int., 63(2023), No. 1, p. 1. doi: 10.2355/isijinternational.ISIJINT-2022-288
      [77]
      I.H. Jung and M.A. Van Ende, Computational thermodynamic calculations: FactSage from CALPHAD thermodynamic database to virtual process simulation, Metall. Mater. Trans. B, 51(2020), No. 5, p. 1851. doi: 10.1007/s11663-020-01908-7
      [78]
      C.B. Shi, S.J. Wang, J. Li, and J.W. Cho, Non-metallic inclusions in electroslag remelting: A review, J. Iron Steel Res. Int., 28(2021), No. 12, p. 1483. doi: 10.1007/s42243-021-00700-4
      [79]
      G.K. Sigworth and J.F. Elliott, The thermodynamics of liquid dilute iron alloys, Met. Sci., 8(1974), No. 1, p. 298. doi: 10.1179/msc.1974.8.1.298
      [80]
      G.Q. Li and H. Suito, Electrochemical measurement of critical supersaturation in F–O–M (M=Al, Si, and Zr) and Fe–O–Al–M (M=C, Mn, Cr, Si, and Ti) melts by solid electrolyte galvanic cell, ISIJ Int., 37(1997), No. 8, p. 762. doi: 10.2355/isijinternational.37.762
      [81]
      T.S. Kim, S.B. Lee, and J.H. Park, Effect of tundish flux on compositional changes in non-metallic inclusions in stainless steel melts, ISIJ Int., 61(2021), No. 12, p. 2998. doi: 10.2355/isijinternational.ISIJINT-2021-167
      [82]
      M. Hino and K. Ito, Thermodynamic Data for Steelmaking, Tohoku University Press, Sendai, 2010, p. 259.
      [83]
      M. Kishi, R. Inoue, and H. Suito, Thermodynamics of oxygen and nitrogen in liquid Fe-20mass%Cr alloy equilibrated with titania-based slags, ISIJ Int., 34(1994), No. 11, p. 859. doi: 10.2355/isijinternational.34.859
      [84]
      H. Suito and R. Inoue, Thermodynamics on control of inclusions composition in ultra-clean steels, ISIJ Int., 36(1996), No. 5, p. 528. doi: 10.2355/isijinternational.36.528
      [85]
      T.J. Wen, Q. Ren, L.F. Zhang, et al., Evolution of nonmetallic inclusions during the electroslag remelting process, Steel Res. Int., 92(2021), No. 6, art. No. 2000629. doi: 10.1002/srin.202000629
      [86]
      T.F. Li, G.Q. Li, Z. Zhang, Y. Liu, and X.J. Wang, Fluoride vaporization and crystallization of CaF2–CaO–Al2O3–(La2O3) slag for vacuum electroslag remelting, Vacuum, 196(2022), art. No. 110807. doi: 10.1016/j.vacuum.2021.110807
      [87]
      S.C. Duan and H.J. Guo, The methodology development for improving energy utilization and reducing fluoride pollution of the electroslag remelting process: A review, Steel Res. Int., 91(2020), No. 7, art. No. 1900634. doi: 10.1002/srin.201900634
      [88]
      C. Wagner, Thermodynamics of Alloys, Addison-Wesley Press, Cambridge, MA, 1952, p. 47.
      [89]
      E. Scheil, Bemerkungen zur schichtkristallbildung, Int. J. Mater. Res., 34(1942), No. 3, p. 70. doi: 10.1515/ijmr-1942-340303
      [90]
      S.K. Choudhary and A. Ghosh, Mathematical model for prediction of composition of inclusions formed during solidification of liquid steel, ISIJ Int., 49(2009), No. 12, p. 1819. doi: 10.2355/isijinternational.49.1819
      [91]
      D. Hou, Z.H. Jiang, Y.W. Dong, Y. Li, W. Gong, and F.B. Liu, Mass transfer model of desulfurization in the electroslag remelting process, Metall. Mater. Trans. B, 48(2017), No. 3, p. 1885. doi: 10.1007/s11663-017-0921-0
      [92]
      H.M. Wang, T.W. Zhang, H. Zhu, G.R. Li, Y.Q. Yan, and J.H. Wang, Effect of B2O3 on melting temperature, viscosity and desulfurization capacity of CaO-based refining flux, ISIJ Int., 51(2011), No. 5, p. 702. doi: 10.2355/isijinternational.51.702
      [93]
      Q.T. Zhu, J. Li, C.B. Shi, and W.T. Yu, Effect of electroslag remelting on carbides in 8Cr13MoV martensitic stainless steel, Int. J. Miner. Metall. Mater., 22(2015), No. 11, p. 1149. doi: 10.1007/s12613-015-1179-7

    Catalog


    • /

      返回文章
      返回