Cite this article as:

Shengchao Duan, Min Joo Lee, Yao Su, Wangzhong Mu, Dong Soo Kim, and Joo Hyun Park, Evolution of nonmetallic inclusions in 80-t 9CrMoCoB large-scale ingots during electroslag remelting process, Int. J. Miner. Metall. Mater., 31(2024), No. 7, pp.1525-1539. https://dx.doi.org/10.1007/s12613-024-2905-9
Shengchao Duan, Min Joo Lee, Yao Su, Wangzhong Mu, Dong Soo Kim, and Joo Hyun Park, Evolution of nonmetallic inclusions in 80-t 9CrMoCoB large-scale ingots during electroslag remelting process, Int. J. Miner. Metall. Mater., 31(2024), No. 7, pp.1525-1539. https://dx.doi.org/10.1007/s12613-024-2905-9
引用本文 PDF XML SpringerLink

电渣重熔制备80 t级 9CrMoCoB 大型耐热钢铸锭中非金属夹杂物的演变

摘要: 在1823 K下进行了CaF2–CaO–Al2O3–SiO2–B2O3熔渣和9CrMoCoB钢的实验室实验,以研究电渣重熔(ESR)过程钢中硼(B)元素的氧化行为。通过离子与分子共存理论(IMCT)和Wagner模型分别计算了渣中SiO2和B2O3的活度以及钢液中Si和B的活度。热力学计算结果表明,与CaF2–CaO–Al2O3–SiO2–B2O3熔渣中的其他成分相比,渣中SiO2和B2O3对钢中平衡B含量有显著影响。热力学计算结果得到了实验室实验和工业实验数据的验证,并且得到了电渣重熔制备大型9CrMoCoB的渣系成分。工业实验在85 t电渣炉上进行,自耗电极直径为1.6 m、电渣锭直径2.15 m、质量为85 t。通过在自耗电极和电渣锭不同位置取样分析制备大型耐热钢铸锭过程夹杂物去除和转变机理。结果发现,自耗电极中主要夹杂物有以Al2O3为核心的CaO–Al2O3–SiO2–MnO液态夹杂物和以Al2O3和MnS为核心的M23C6碳化物。在重熔铸锭中只能观察到纯Al2O3夹杂物和以Al2O3为核心的M23C6碳化物。通过电解萃取法确定该碳化物的成分包含C、Fe、Cr、W和Mo元素,透射电镜确定该碳化物类型可以为Cr21.34Fe1.66C6、(Cr19W4)C6、Cr18.4Mo4.6C6和Cr16Fe5Mo2C6。以上结果说明,在电渣重熔过程中,在电极端部位置液态CaO–Al2O3–SiO2–MnO氧化物和MnS硫化物分别被炉渣吸附或发生分解通过熔渣脱硫反应去除。电渣锭中Al2O3夹杂物的生成主要由于钢液中Al含量的增加导致的。本文对夹杂物的生成和转变机理进行了详细的热力学分析。

 

Evolution of nonmetallic inclusions in 80-t 9CrMoCoB large-scale ingots during electroslag remelting process

Abstract: In combination with theoretical calculations, experiments were conducted to investigate the evolution behavior of nonmetallic inclusions (NMIs) during the manufacture of large-scale heat-resistant steel ingots using 9CrMoCoB heat-resistant steel and CaF2–CaO–Al2O3–SiO2–B2O3 electroslag remelting (ESR)-type slag in an 80-t industrial ESR furnace. The main types of NMI in the consumable electrode comprised pure alumina, a multiphase oxide consisting of an Al2O3 core and liquid CaO–Al2O3–SiO2–MnO shell, and M23C6 carbides with an MnS core. The Al2O3 and MnS inclusions had higher precipitation temperatures than the M23C6-type carbide under equilibrium and nonequilibrium solidification processes. Therefore, inclusions can act as nucleation sites for carbide layer precipitation. The ESR process completely removed the liquid CaO–Al2O3–SiO2–MnO oxide and MnS inclusion with a carbide shell, and only the Al2O3 inclusions and Al2O3 core with a carbide shell occupied the remelted ingot. The M23C6-type carbides in steel were determined as Cr23C6 based on the analysis of transmission electron microscopy results. The substitution of Cr with W, Fe, or/and Mo in the Cr23C6 lattice caused slight changes in the lattice parameter of the Cr23C6 carbide. Therefore, Cr21.34Fe1.66C6, (Cr19W4)C6, Cr18.4Mo4.6C6, and Cr16Fe5Mo2C6 can match the fraction pattern of Cr23C6 carbide. The Al2O3 inclusions in the remelted ingot formed due to the reduction of CaO, SiO2, and MnO components in the liquid inclusion. The increased Al content in liquid steel or the higher supersaturation degree of Al2O3 precipitation in the remelted ingot than that in the electrode can be attributed to the evaporation of CaF2 and the increase in CaO content in the ESR-type slag.

 

/

返回文章
返回