Cite this article as:

Wenxin Zhao, Meng Zhang, Yukun Miao, Chang Wang, Anguo Cui, Liying Yuan, Zeqing Miao, Xiaoqing Wang, Zhibo Wang, Haoyu Pang, Alan Meng, Zhenjiang Li, and Ting Wang, Structural design and controllable preparation of SiCNWs@Fe3O4@NC nanocomposites for electromagnetic wave absorption, Int. J. Miner. Metall. Mater., 32(2025), No. 3, pp.520-533. https://dx.doi.org/10.1007/s12613-024-2911-y
Wenxin Zhao, Meng Zhang, Yukun Miao, Chang Wang, Anguo Cui, Liying Yuan, Zeqing Miao, Xiaoqing Wang, Zhibo Wang, Haoyu Pang, Alan Meng, Zhenjiang Li, and Ting Wang, Structural design and controllable preparation of SiCNWs@Fe3O4@NC nanocomposites for electromagnetic wave absorption, Int. J. Miner. Metall. Mater., 32(2025), No. 3, pp.520-533. https://dx.doi.org/10.1007/s12613-024-2911-y
引用本文 PDF XML SpringerLink

用于电磁波吸收的 SiCNWs@Fe3O4@NC 纳米复合材料结构设计与可控制备

摘要: 以SiC纳米线(SiCNWs)为衬底,依次采用回流退火和电沉积碳化的方法,将SiC纳米线与磁性Fe3O4纳米粒子和非晶态氮掺杂碳(NC)相结合,制备SiCNWs@Fe3O4@NC纳米复合材料。该产品通过系统测试和表征,为结构和成分变化对电磁波吸收性能的影响提供了有价值的见解。优化后的SiCNWs@Fe3O4@NC纳米复合材料在填充量为30wt%,厚度为2.03 mm的条件下,在11.04 GHz频率材料表现出最小反射损耗(RLmin)为−53.69 dB,有效吸收带宽(EAB)为4.4 GHz。该研究表明,利用多重散射、极化弛豫、磁滞损耗和涡流损耗等机制在增强纳米复合材料对电磁波吸收方面具有协同效应。此外,建立了多组分电磁波衰减模型,为新型吸波材料的设计和吸波性能的提高提供了有价值的见解。该研究证明SiCNWs@Fe3O4@NC纳米复合材料作为一种高效的电磁波吸收材料具有巨大潜力,在隐身技术和微波吸收等各个领域具有潜在的应用前景。

 

Structural design and controllable preparation of SiCNWs@Fe3O4@NC nanocomposites for electromagnetic wave absorption

Abstract: Using SiC nanowires (SiCNWs) as the substrate, reflux–annealing and electrodeposition–carbonization were sequentially applied to integrate SiC nanowires with magnetic Fe3O4 nanoparticles and amorphous nitrogen-doped carbon (NC) for the fabrication of SiCNWs@Fe3O4@NC nanocomposite. Comprehensive testing and characterization of this product provided valuable insights into the impact of structural and composition changes on its electromagnetic wave absorption performances. The optimized SiCNWs@Fe3O4@NC nanocomposite, which has 30wt% filler content and a corresponding thickness of 2.03 mm, demonstrates exceptional performance with the minimum reflection loss (RLmin) of −53.69 dB at 11.04 GHz and effective absorption bandwidth (EAB) of 4.4 GHz. The synergistic effects of the enhanced nanocomposite on electromagnetic wave absorption were thoroughly elucidated using the theories of multiple scattering, polarization relaxation, hysteresis loss, and eddy current loss. Furthermore, a multicomponent electromagnetic wave attenuation model was established, providing valuable insight into the design of novel absorbing materials and the enhancement of their absorption performances. This research demonstrated the significant potential of the SiCNWs@Fe3O4@NC nanocomposite as a highly efficient electromagnetic wave-absorbing material with potential applications in various fields, such as stealth technology and microwave absorption.

 

/

返回文章
返回