留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 32 Issue 1
Jan.  2025

图(5)

数据统计

分享

计量
  • 文章访问数:  473
  • HTML全文浏览量:  250
  • PDF下载量:  33
  • 被引次数: 0
Shaorou Ke, Yajing Zhao, Xin Min, Yanghong Li, Ruiyu Mi, Yangai Liu, Xiaowen Wu, Minghao Fang, and Zhaohui Huang, Highly mass activity electrocatalysts with ultralow Pt loading on carbon black for hydrogen evolution reaction, Int. J. Miner. Metall. Mater., 32(2025), No. 1, pp. 182-190. https://doi.org/10.1007/s12613-024-2912-x
Cite this article as:
Shaorou Ke, Yajing Zhao, Xin Min, Yanghong Li, Ruiyu Mi, Yangai Liu, Xiaowen Wu, Minghao Fang, and Zhaohui Huang, Highly mass activity electrocatalysts with ultralow Pt loading on carbon black for hydrogen evolution reaction, Int. J. Miner. Metall. Mater., 32(2025), No. 1, pp. 182-190. https://doi.org/10.1007/s12613-024-2912-x
引用本文 PDF XML SpringerLink
研究论文

高质量活性铂/碳黑电催化剂制备及其高效电催化析氢性能



    * 共同第一作者
  • 通讯作者:

    闵鑫    E-mail: minx@cugb.edu.cn

文章亮点

  • (1) 成功制备了铂含量低但催化性能优异的铂碳纳米催化剂,对降低成本及提高资源利用率具有重要意义。
  • (2) 通过超声辅助–原位合成技术开发了活性组分均匀分布的铂碳催化剂,其质量活性优于商业Pt/C催化剂。
  • (3) 揭示碳黑与铂之间的轨道杂化效应,阐明制得铂碳催化剂保持良好稳定性的作用机制。
  • 铂基纳米催化剂在催化等领域中具有巨大的应用前景,但开发高效稳定且铂载量更低的铂基纳米催化剂仍是当前的重要挑战。本研究通过超声辅助的原位合成技术成功制备了一类以碳黑作为载体的铂基纳米催化剂,其铂的负载量仅为铂载量6.84wt%,金属铂纳米颗粒的粒径约为2 nm,且在碳黑表面均匀分布,归因于碳黑和铂之间强烈的s–p–d轨道杂化作用,有效防止了铂纳米颗粒团聚。研究结果表明,制得铂碳催化剂具有优异的电催化析氢性能,在电流密度为100 mA·cm−2时其过电位仅为100 mV,且具有优异的循环稳定性;其质量活性高达1.61 A/mg,是商业铂碳催化剂(0.37 A/mg)的4倍。论文研究成果可望为推进贵金属高效制备高效电催化剂和铂基纳米催化剂发展应该提供新的技术思路。
  • Research Article

    Highly mass activity electrocatalysts with ultralow Pt loading on carbon black for hydrogen evolution reaction

    + Author Affiliations
    • Pt-based nanocatalysts offer excellent prospects for various industries. However, the low loading of Pt with excellent performance for efficient and stable nanocatalysts still presents a considerable challenge. In this study, nanocatalysts with ultralow Pt content, excellent performance, and carbon black as support were prepared through in-situ synthesis. These ~2-nm particles uniformly and stably dispersed on carbon black because of the strong s–p–d orbital hybridizations between carbon black and Pt, which suppressed the agglomeration of Pt ions. This unique structure is beneficial for the hydrogen evolution reaction. The catalysts exhibited remarkable catalytic activity for hydrogen evolution reaction, exhibiting a potential of 100 mV at 100 mA·cm−2, which is comparable to those of commercial Pt/C catalysts. Mass activity (1.61 A/mg) was four times that of a commercial Pt/C catalyst (0.37 A/mg). The ultralow Pt loading (6.84wt%) paves the way for the development of next-generation electrocatalysts.
    • loading
    • Supplementary Information-s12613-024-2912-x.docx
    • [1]
      S. Li, J.K. Lee, S. Zhou, M. Pasta, and J.H. Warner, Synthesis of surface grown Pt nanoparticles on edge-enriched MoS2 porous thin films for enhancing electrochemical performance, Chem. Mater., 31(2019), No. 2, p. 387. doi: 10.1021/acs.chemmater.8b03540
      [2]
      T. Li, Y.D. Liu, R.R. Jia, M. Yaseen, L.Y. Shi, and L. Huang, Irradiation regulates the size of Pt nanoparticles on Au@MnO2 nanosheets for electrocatalytic hydrogen evolution, New J. Chem., 45(2021), No. 47, p. 22327. doi: 10.1039/D1NJ04433H
      [3]
      Y.F. Xie, J.Y. Cai, Y.S. Wu, et al., Boosting water dissociation kinetics on Pt–Ni nanowires by N-induced orbital tuning, Adv. Mater., 31(2019), No. 16, art. No. 1807780. doi: 10.1002/adma.201807780
      [4]
      X.P. Niu, J.Y. Sun, W.L. Zhao, X.Y. Yang, X.W. Zhang, and Q.F. Wang, Strong electronic metal-support interactions on supported Pt catalysts for efficient perhydrogenation of polyaromatics to aviation fuels, Fuel Process. Technol., 241(2023), art. No. 107622. doi: 10.1016/j.fuproc.2022.107622
      [5]
      T. Zhang, W.Z. Wang, Z. Ma, L. Bai, Y. Yao, and D.Q. Xu, Bimetallic Pt–Ru covalently bonded on carbon nanotubes for efficient methanol oxidation, Int. J. Miner. Metall. Mater., 30(2023), No. 9, p. 1816. doi: 10.1007/s12613-023-2699-1
      [6]
      J.Y. Zhang, M.Y. Yang, X.H. Zhu, et al., The role of Pt doping on electrochemical performance and cost of alkaline water electrolysis catalysts, Chem. Eng. J., 476(2023), art. No. 146576. doi: 10.1016/j.cej.2023.146576
      [7]
      S. Anantharaj, P.E. Karthik, B. Subramanian, and S. Kundu, Pt nanoparticle anchored molecular self-assemblies of DNA: An extremely stable and efficient HER electrocatalyst with ultralow Pt content, ACS Catal., 6(2016), No. 7, p. 4660. doi: 10.1021/acscatal.6b00965
      [8]
      D. Chen, Z.H. Pu, P.Y. Wang, et al., Mapping hydrogen evolution activity trends of intermetallic Pt-group silicides, ACS Catal., 12(2022), No. 4, p. 2623. doi: 10.1021/acscatal.1c05175
      [9]
      Y.F. Qiu, X.F. Dai, Y.P. Wang, X.Y. Ji, Z. Ma, and S.Q. Liu, The polyoxometalates mediated preparation of phosphate-modified NiMoO4− x with abundant O-vacancies for H2 production via urea electrolysis, J. Colloid Interface Sci., 629(2023), p. 297. doi: 10.1016/j.jcis.2022.08.145
      [10]
      L.X. Huo, C.Q. Jin, K. Jiang, Q.Y. Bao, Z.G. Hu, and J.H. Chu, Applications of nickel-based electrocatalysts for hydrogen evolution reaction, Adv. Energy Sustain. Res., 3(2022), No. 4, art. No. 2100189. doi: 10.1002/aesr.202100189
      [11]
      X.Z. Hu, Z. Liu, Y. Feng, et al., Mechanically mixing copper and silver into self-supporting electrocatalyst for hydrogen evolution, Int. J. Miner. Metall. Mater., 30(2023), No. 10, p. 1906. doi: 10.1007/s12613-023-2695-5
      [12]
      Z.J. Zhu, B.C. Zhang, Q.M. Tang, L.L. Mao, Y. Shuang, and X. Zhang, Sources and geochemistry of platinum group elements (PGE) in the early Cambrian Black Rock Series in Chengkou district, Northern Dabashan, Southwestern China, Acta Miner. Sin., 37(2017), No. 4, p. 495.
      [13]
      V. Muravev, A. Parastaev, Y.V.D. Bosch, et al., Size of cerium dioxide support nanocrystals dictates reactivity of highly dispersed palladium catalysts, Science, 380(2023), No. 6650, p. 1174. doi: 10.1126/science.adf9082
      [14]
      S. Park, Y.L. Lee, Y. Yoon, et al., Reducing the high hydrogen binding strength of vanadium carbide MXene with atomic Pt confinement for high activity toward HER, Appl. Catal. B, 304(2022), art. No. 120989. doi: 10.1016/j.apcatb.2021.120989
      [15]
      L. Gong, J.W. Zhu, F.J. Xia, et al., Marriage of ultralow platinum and single-atom MnN4 moiety for augmented ORR and HER catalysis, ACS Catal., 13(2023), No. 6, p. 4012. doi: 10.1021/acscatal.2c06340
      [16]
      Z.Y. Shi, X. Zhang, X.Q. Lin, et al., Phase-dependent growth of Pt on MoS2 for highly efficient H2 evolution, Nature, 621(2023), No. 7978, p. 300. doi: 10.1038/s41586-023-06339-3
      [17]
      Y.X. Li, X.Y. Zhang, L. Liu, et al., Ultra-low Pt doping and Pt–Ni pair sites in amorphous/crystalline interfacial electrocatalyst enable efficient alkaline hydrogen evolution, Small, 19(2023), No. 23, art. No. 2300368. doi: 10.1002/smll.202300368
      [18]
      H.W. Wang, X.K. Gu, X.S. Zheng, et al., Disentangling the size-dependent geometric and electronic effects of palladium nanocatalysts beyond selectivity, Sci. Adv., 5(2019), No. 1, art. No. eaat6413. doi: 10.1126/sciadv.aat6413
      [19]
      L.H. Liang, H.H. Jin, H. Zhou, et al., Cobalt single atom site isolated Pt nanoparticles for efficient ORR and HER in acid media, Nano Energy, 88(2021), art. No. 106221. doi: 10.1016/j.nanoen.2021.106221
      [20]
      D. Zhou, B. Jiang, R. Yang, X.D. Hou, and C.B. Zheng, One-step synthesis of monodispersed Pt nanoparticles anchored on 3D graphene foams and its application for electrocatalytic hydrogen evolution, Chin. Chem. Lett., 31(2020), No. 6, p. 1540. doi: 10.1016/j.cclet.2019.11.014
      [21]
      Z.S. Li, Isogenous single atom catalysts (I-SACs): A significative new concept connecting nano-catalysts and SACs, Nano Energy, 113(2023), art. No. 108527. doi: 10.1016/j.nanoen.2023.108527
      [22]
      R. Lang, X.R. Du, Y.K. Huang, et al., Single-atom catalysts based on the metal–oxide interaction, Chem. Rev., 120(2020), No. 21, p. 11986. doi: 10.1021/acs.chemrev.0c00797
      [23]
      S. Zhang, Z.M. Xia, W.B. Li, et al. , In-situ reconstruction of single-atom Pt on Co3O4 for hydrogenation, Nano Res., 16(2023), No. 5, p. 6507. doi: 10.1007/s12274-022-5279-1
      [24]
      G.D. Liberto, I. Barlocco, L. Giordano, S. Tosoni, and G. Pacchioni, Single-atom electrocatalysis from first principles: Current status and open challenges, Curr. Opin. Electrochem., 40(2023), art. No. 101343. doi: 10.1016/j.coelec.2023.101343
      [25]
      Y. Mu, T.T. Wang, J. Zhang, C.G. Meng, Y.F. Zhang, and Z.K. Kou, Single-atom catalysts: Advances and challenges in metal-support interactions for enhanced electrocatalysis, Electrochem. Energy Rev., 5(2022), No. 1, p. 145. doi: 10.1007/s41918-021-00124-4
      [26]
      R.S. Li, D.X. Wu, P. Rao, et al., General approach for atomically dispersed precious metal catalysts toward hydrogen reaction, Carbon Energy, 5(2023), No. 7, art. No. e294. doi: 10.1002/cey2.294
      [27]
      K.P. Liu, X.T. Zhao, G.Q. Ren, et al., Strong metal-support interaction promoted scalable production of thermally stable single-atom catalysts, Nat. Commun., 11(2020), No. 1, art. No. 1263. doi: 10.1038/s41467-020-14984-9
      [28]
      X. Wu, H.B. Zhang, S.W. Zuo, et al., Engineering the coordination sphere of isolated active sites to explore the intrinsic activity in single-atom catalysts, Nano Micro Lett., 13(2021), No. 1, art. No. 136. doi: 10.1007/s40820-021-00668-6
      [29]
      D.P. Minh and P. Serp, Introduction to supported metal single atom catalysis, [in] P. Serp and D.P. Minh, eds., Supported Metal Single Atom Catalysis, Wiley, Weinheim, 2022, p. 14.
      [30]
      Z.H. Ma, H. Tian, G. Meng, et al., Size effects of platinum particles@CNT on HER and ORR performance, Sci. China Mater., 63(2020), No. 12, p. 2517. doi: 10.1007/s40843-020-1449-2
      [31]
      G.Q. Li, P.K. Wen, C.Q. Gao, et al., Effects of CeO2 pre-calcined at different temperatures on the performance of Pt/CeO2–C electrocatalyst for methanol oxidation reaction, Int. J. Miner. Metall. Mater., 28(2021), No. 7, p. 1224. doi: 10.1007/s12613-020-2076-2
      [32]
      S.E. Jun, Y.H. Kim, J. Kim, et al., Atomically dispersed iridium catalysts on silicon photoanode for efficient photoelectrochemical water splitting, Nat. Commun., 14(2023), No. 1, art. No. 609. doi: 10.1038/s41467-023-36335-0
      [33]
      W.B. Zhang, Y. Yang, Y. Tang, and Q.S. Gao, In-situ reconstruction of catalysts in cathodic electrocatalysis: New insights into active-site structures and working mechanisms, J. Energy Chem., 70(2022), p. 414. doi: 10.1016/j.jechem.2022.02.036
      [34]
      Y.J. Zhao, X. Min, Z.P. Ding, et al., Metal-based nanocatalysts via a universal design on cellular structure, Adv. Sci., 7(2020), No. 3, art. No. 1902051. doi: 10.1002/advs.201902051
      [35]
      W. Xi, K. Wang, Y.L. Shen, et al., Dynamic co-catalysis of Au single atoms and nanoporous Au for methane pyrolysis, Nat. Commun., 11(2020), No. 1, art. No. 1919. doi: 10.1038/s41467-020-15806-8
      [36]
      M. Yang, R.Y. Bi, J.Y. Wang, R.B. Yu, and D. Wang, Decoding lithium batteries through advanced in situ characterization techniques, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 965. doi: 10.1007/s12613-022-2461-0
      [37]
      G. Zhong, R. Zhao, Y.R. Shi, et al., Thermal shock synthesis of carbon nanotubes supporting small-sized rhenium nanoparticles for efficient electrocatalytic hydrogen evolution, Rare Met., 42(2023), No. 7, p. 2166. doi: 10.1007/s12598-022-02259-9
      [38]
      Y.C. Wu, W. Wei, R.H. Yu, et al., Anchoring sub-nanometer Pt clusters on crumpled paper-like MXene enables high hydrogen evolution mass activity, Adv. Funct. Mater., 32(2022), No. 17, art. No. 2110910. doi: 10.1002/adfm.202110910
      [39]
      Y.Z. Li, J.L. Chen, S. Chen, et al. , In situ confined growth of bismuth nanoribbons with active and robust edge sites for boosted CO2 electroreduction, ACS Energy Lett., 7(2022), No. 4, p. 1454. doi: 10.1021/acsenergylett.2c00326
      [40]
      M. Chen, W.L. Ao, C.S. Dai, T. Tao, and J. Yang, Synthesis and electrochemical properties of LiNi0.8Al0.2− xTi xO2 cathode materials by an ultrasonic-assisted co-precipitation method, Int. J. Miner. Metall. Mater., 16(2009), No. 4, p. 452. doi: 10.1016/S1674-4799(09)60079-0
      [41]
      X.L. Wang, Q.H. Zhang, H.C. Jiang, et al., In situ alloying with hybrid mesoporous Fe–N–C to accelerate the catalysis efficiency of Pt for the oxygen reduction reaction, ACS Sustainable Chem. Eng., 11(2023), No. 27, p. 10051. doi: 10.1021/acssuschemeng.3c01836
      [42]
      D.H. Cao, X.F. Ma, Y.P. Zhang, et al., Highly dispersed NiMo@rGO nanocomposite catalysts fabricated by a two-step hydrothermal method for hydrogen evolution, Int. J. Miner. Metall. Mater., 30(2023), No. 12, p. 2432. doi: 10.1007/s12613-023-2677-7
      [43]
      J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett., 77(1996), No. 18, p. 3865. doi: 10.1103/PhysRevLett.77.3865
      [44]
      J.Y. Song, C. Kim, M. Kim, et al., Generation of high-density nanoparticles in the carbothermal shock method, Sci. Adv., 7(2021), No. 48, art. No. eabk2984. doi: 10.1126/sciadv.abk2984
      [45]
      D.H. Nam, S. Lee, Y.J. Lee, et al., Gaseous nanocarving-mediated carbon framework with spontaneous metal assembly for structure-tunable metal/carbon nanofibers, Adv. Mater., 29(2017), No. 38, art. No. 1702958. doi: 10.1002/adma.201702958
      [46]
      Z.Y. Chen, L.Z. Bian, L.J. Wang, et al., Topography, structure, and formation kinetic mechanism of carbon deposited onto nickel in the temperature range from 400 to 850°C, Int. J. Miner. Metall. Mater., 24(2017), No. 5, p. 574. doi: 10.1007/s12613-017-1439-9
      [47]
      H.T. Yuan, Y.Z. Wang, C.X. Yang, et al., Ultra-thin Co–Fe layered double hydroxide hollow nanocubes for efficient electrocatalytic water oxidation, Chemphyschem, 20(2019), No. 22, p. 2964. doi: 10.1002/cphc.201900524
      [48]
      X.P. Yin, H.J. Wang, S.F. Tang, et al., Engineering the coordination environment of single-atom platinum anchored on graphdiyne for optimizing electrocatalytic hydrogen evolution, Angew. Chem., 130(2018), No. 30, p. 9526. doi: 10.1002/ange.201804817
      [49]
      N.A. Bamatraf, S.B. Alreshaidan, A.A. Ibrahim, et al., Different supported Ni catalysts for dry reforming of methane: Effect of calcination temperature, J. King Saud Univ. Sci., 35(2023), No. 10, art. No. 102958. doi: 10.1016/j.jksus.2023.102958
      [50]
      H.B. Zhang, P.F. An, W. Zhou, et al., Dynamic traction of lattice-confined platinum atoms into mesoporous carbon matrix for hydrogen evolution reaction, Sci. Adv., 4(2018), No. 1, art. No. eaao6657. doi: 10.1126/sciadv.aao6657
      [51]
      H.Z. Yang, Z.J. Yang, D.W. Chu, et al., Highly dispersed platinum deposited on nitrogen-doped vertical graphene array for efficient electrochemical hydrogen evolution, 2D Mater., 9(2022), No. 4, art. No. 045011. doi: 10.1088/2053-1583/ac805a
      [52]
      J. Ying, G.P. Jiang, Z.P. Cano, L. Han, X.Y. Yang, and Z.W. Chen, Nitrogen-doped hollow porous carbon polyhedrons embedded with highly dispersed Pt nanoparticles as a highly efficient and stable hydrogen evolution electrocatalyst, Nano Energy, 40(2017), p. 88. doi: 10.1016/j.nanoen.2017.07.032
      [53]
      T.R. Zhang, S.T. Weng, X.F. Wang, et al., Platinum atomic clusters embedded in polyoxometalates-carbon black as an efficient and durable catalyst for hydrogen evolution reaction, J. Colloid Interface Sci., 624(2022), p. 704. doi: 10.1016/j.jcis.2022.06.018
      [54]
      J.L. Kang, M.J. Wang, C.B. Lu, et al., Platinum atoms and nanoparticles embedded porous carbons for hydrogen evolution reaction, Materials, 13(2020), No. 7, art. No. 1513. doi: 10.3390/ma13071513
      [55]
      J.S. Xu, R. Li, R.G. Zeng, et al., Platinum single atoms supported on nanoarray-structured nitrogen-doped graphite foil with enhanced catalytic performance for hydrogen evolution reaction, ACS Appl. Mater. Interfaces, 12(2020), No. 34, p. 38106. doi: 10.1021/acsami.0c09615
      [56]
      J.P. Ji, Y.P. Zhang, L.B. Tang, et al., Platinum single-atom and cluster anchored on functionalized MWCNTs with ultrahigh mass efficiency for electrocatalytic hydrogen evolution, Nano Energy, 63(2019), art. No. 103849. doi: 10.1016/j.nanoen.2019.06.045
      [57]
      Q.Q. Yan, D.X. Wu, S.Q. Chu, et al., Reversing the charge transfer between platinum and sulfur-doped carbon support for electrocatalytic hydrogen evolution, Nat. Commun., 10(2019), No. 1, art. No. 4977. doi: 10.1038/s41467-019-12851-w
      [58]
      J.X. Han, C.H. Gong, C. He, P.R. He, J. Zhang, and Z.G. Zhang, Sub-1 nm Pt nanoclusters on N and P co-doped carbon nanotubes for the electrocatalytic hydrogen evolution reaction, J. Mater. Chem. A, 10(2022), No. 31, p. 16403. doi: 10.1039/D2TA05241E
      [59]
      M.X. Song, Y.H. Song, H. Li, et al., Sucrose leavening-induced hierarchically porous carbon enhanced the hydrogen evolution reaction performance of Pt nanoparticles, Electrochim. Acta, 320(2019), art. No. 134603. doi: 10.1016/j.electacta.2019.134603
      [60]
      X.D. Wei and N. Li, Tungsten carbide/carbon composites coated with little platinum nano particles derived from the redox reaction between in-situ synthesized WC1− x and chloroplatinic acid as the electrocatalyst for hydrogen evolution reaction, Appl. Surf. Sci., 463(2019), p. 1154. doi: 10.1016/j.apsusc.2018.09.043
      [61]
      X.R. Liu, K.J. Wang, Y.C. Li, et al., Ultrafine Pt nanoparticles embedded in defective porous carbon for efficient hydrogen evolution reaction, J. Alloys Compd., 968(2023), art. No. 171970. doi: 10.1016/j.jallcom.2023.171970
      [62]
      W.W. Zhong, W.G. Tu, Z.P. Wang, et al., Ultralow-temperature assisted synthesis of single platinum atoms anchored on carbon nanotubes for efficiently electrocatalytic acidic hydrogen evolution, J. Energy Chem., 51(2020), p. 280. doi: 10.1016/j.jechem.2020.04.035
      [63]
      H.H. Wei, H.B. Wu, K. Huang, et al., Ultralow-temperature photochemical synthesis of atomically dispersed Pt catalysts for the hydrogen evolution reaction, Chem. Sci., 10(2019), No. 9, p. 2830. doi: 10.1039/C8SC04986F
      [64]
      X.Y. Zhou, Q.H. Zhang, X.S. Luo, et al., Drop-coated C2N electrode for hydrogen evolution reaction, Mater. Lett., 309(2022), art. No. 131428. doi: 10.1016/j.matlet.2021.131428
      [65]
      M. Tavakkoli, N. Holmberg, R. Kronberg, et al., Electrochemical activation of single-walled carbon nanotubes with pseudo-atomic-scale platinum for the hydrogen evolution reaction, ACS Catal., 7(2017), No. 5, p. 3121. doi: 10.1021/acscatal.7b00199
      [66]
      X.X. Lin, A.J. Wang, K.M. Fang, J.H. Yuan, and J.J. Feng, One-pot seedless aqueous synthesis of reduced graphene oxide (rGO)-supported core–shell Pt@Pd nanoflowers as advanced catalysts for oxygen reduction and hydrogen evolution, ACS Sustainable Chem. Eng., 5(2017), No. 10, p. 8675. doi: 10.1021/acssuschemeng.7b01400
      [67]
      H. Xiao, M. Bai, M. Zhao, et al., Interfacial carbon dots introduced distribution-structure modulation of Pt loading on graphene towards enhanced electrocatalytic hydrogen evolution reaction, J. Colloid Interface Sci., 656(2024), p. 214. doi: 10.1016/j.jcis.2023.11.102
      [68]
      M.N. Elsodany, M.A.A. Rahim, N.H. Shalaby, and M.A. Sultan, Nickel and/or platinum modified crystalline silicon–carbon composites and their electrochemical behavior towards the hydrogen evolution reaction, J. Appl. Electrochem., 54(2024), No. 3, p. 531. doi: 10.1007/s10800-023-01988-8
      [69]
      C.M. Long, M.A. Nascarella, and P.A. Valberg, Carbon black vs. black carbon and other airborne materials containing elemental carbon: Physical and chemical distinctions, Environ. Pollut., 181(2013), p. 271. doi: 10.1016/j.envpol.2013.06.009
      [70]
      T. Ling, D.Y. Yan, H. Wang, et al., Activating cobalt(II) oxide nanorods for efficient electrocatalysis by strain engineering, Nat. Commun., 8(2017), art. No. 1509. doi: 10.1038/s41467-017-01872-y
      [71]
      P. Xiao, W. Chen, and X. Wang, A review of phosphide-based materials for electrocatalytic hydrogen evolution, Adv. Energy Mater., 5(2015), No. 24, art. No. 1500985. doi: 10.1002/aenm.201500985
      [72]
      C.X. Zhao, C.Y. Niu, Z.J. Qin, et al., H18 carbon: A new metallic phase with sp2–sp3 hybridized bonding network, Sci. Rep., 6(2016), art. No. 21879. doi: 10.1038/srep21879
      [73]
      J.I. Choi, H.S. Kim, Y.J. Sohn, S.D. Yim, F.M. Alamgir, and S.S. Jang, Density functional theory study of oxygen reduction on graphene and platinum surfaces of Pt–graphene hybrids, ACS Appl. Nano Mater., 4(2021), No. 2, p. 1067. doi: 10.1021/acsanm.0c02625
      [74]
      M.M. Guo, M.J. Ji, and W. Cui, Theoretical investigation of HER/OER/ORR catalytic activity of single atom-decorated graphyne by DFT and comparative DOS analyses, Appl. Surf. Sci., 592(2022), art. No. 153237. doi: 10.1016/j.apsusc.2022.153237

    Catalog


    • /

      返回文章
      返回