Cite this article as:

Yong Hou, Shuo Zhang, Jie Dang, Jia Guo, Hanghang Zhou, and Xuewei Lü, Viscosity and structure relationship with equimolar substitution of CaO with MgO in the CaO–MgO–Al2O3–SiO2 slag melts, Int. J. Miner. Metall. Mater., 32(2025), No. 1, pp.70-79. https://dx.doi.org/10.1007/s12613-024-2913-9
Yong Hou, Shuo Zhang, Jie Dang, Jia Guo, Hanghang Zhou, and Xuewei Lü, Viscosity and structure relationship with equimolar substitution of CaO with MgO in the CaO–MgO–Al2O3–SiO2 slag melts, Int. J. Miner. Metall. Mater., 32(2025), No. 1, pp.70-79. https://dx.doi.org/10.1007/s12613-024-2913-9
引用本文 PDF XML SpringerLink

CaO–MgO–Al2O3–SiO2熔渣中MgO等摩尔取代CaO时的粘度和结构关系

摘要: 作为冶金过程中的基础渣系,CaO–MgO–Al2O3–SiO2熔渣一直备受关注。尽管该体系的粘度在文献中已有大量报道,但仍有一些科学问题尚未澄清,特别是在高Al2O3体系中MgO替代CaO所引起的粘度变化。从高炉炼铁的角度来看,铁矿石中Al2O3含量的增加会导致炉渣中Al2O3含量的相应增加。目前,高炉中高铝渣系的Al2O3含量一般限制在16wt%–18.5wt%,无法进一步突破。因此,了解Al2O3含量在16wt%–18.5wt%范围内的炉渣粘度变化有助于促进高铝铁矿石的规模化应用。本文研究了MgO等摩尔替代CaO对CaO–MgO–10mol%Al2O3–45mol%SiO2熔渣(Al2O3含量换算成质量分数为16wt%–18.5wt%)粘度和结构的影响。研究发现,随着MgO替代量从0增加到15mol%,熔渣粘度先下降,然后随着替代量的进一步增加而上升。然而,现有文献中的粘度模型无法预测这种变化趋势。在替代过程中,与每个配位硅原子相连的桥氧的平均数量呈上升趋势。此外,MgO对桥氧的弱打断能力导致非桥氧减少,从而增加了熔渣的聚合度。结构分析表明,聚合度是决定熔渣粘度总体趋势的主要因素,但不是唯一因素。键强是影响粘度的另一个重要因素。粘度最小值的出现可归因于CaO和MgO解聚SiO4和AlO4四面体结构时产生的非桥氧的键强的复杂演变。

 

Viscosity and structure relationship with equimolar substitution of CaO with MgO in the CaO–MgO–Al2O3–SiO2 slag melts

Abstract: Currently, the Al2O3 content in the high-alumina slag systems within blast furnaces is generally limited to 16wt%–18.5wt%, making it challenging to overcome this limitation. Unlike most studies that concentrated on managing the MgO/Al2O3 ratio or basicity, this paper explored the effect of equimolar substitution of MgO for CaO on the viscosity and structure of a high-alumina CaO–MgO–Al2O3–SiO2 slag system, providing theoretical guidance and data to facilitate the application of high-alumina ores. The results revealed that the viscosity first decreased and then increased with higher MgO substitution, reaching a minimum at 15mol% MgO concentration. Fourier transform infrared spectroscopy (FTIR) results found that the depths of the troughs representing SiO4 tetrahedra, AlO4 tetrahedra, and Si–O–Al bending became progressively deeper with increased MgO substitution. Deconvolution of the Raman spectra showed that the average number of bridging oxygens per Si atom and the X_\textQ^3\text/X_\textQ^2 ( X_\textQ^i is the molar fraction of Qi unit, and i is the number of bridging oxygens in a SiO4 tetrahedral unit) ratio increased from 2.30 and 1.02 to 2.52 and 2.14, respectively, indicating a progressive polymerization of the silicate structure. X-ray photoelectron spectroscopy (XPS) results highlighted that non-bridging oxygen content decreased from 77.97mol% to 63.41mol% with increasing MgO concentration, whereas bridging oxygen and free oxygen contents increased. Structural analysis demonstrated a gradual increase in the polymerization degree of the tetrahedral structure with the increase in MgO substitution. However, bond strength is another important factor affecting the slag viscosity. The occurrence of a viscosity minimum can be attributed to the complex evolution of bond strengths of non-bridging oxygens generated during depolymerization of the SiO4 and AlO4 tetrahedral structures by CaO and MgO.

 

/

返回文章
返回