Cite this article as: |
Dapeng Chen, Shenghua Yin, Weiguo Long, Rongfu Yan, Yufei Zhang, Zepeng Yan, Leiming Wang, and Wei Chen, Heterogeneous information phase space reconstruction and stability prediction of filling body–surrounding rock combination, Int. J. Miner. Metall. Mater., 31(2024), No. 7, pp. 1500-1511. https://doi.org/10.1007/s12613-024-2916-6 |
尹升华 E-mail: csuysh@126.com
[1] |
S.H. Yin, Z.P. Yan, X. Chen, R.F. Yan, D.P. Chen, and J.W. Chen, Mechanical properties of cemented tailings and waste-rock backfill (CTWB) materials: Laboratory tests and deep learning modeling, Constr. Build. Mater., 369(2023), art. No. 130610. doi: 10.1016/j.conbuildmat.2023.130610
|
[2] |
Z.L. Xue, H.K. Sun, D.Q. Gan, Z.P. Yan, and Z.Y. Liu, Wall slip behavior of cemented paste backfill slurry during pipeline based on noncontact experimental detection, Int. J. Miner. Metall. Mater., 30(2023), No. 8, p. 1515. doi: 10.1007/s12613-023-2610-0
|
[3] |
L.H. Yang, J.C. Li, H.B. Liu, et al., Systematic review of mixing technology for recycling waste tailings as cemented paste backfill in mines in China, Int. J. Miner. Metall. Mater., 30(2023), No. 8, p. 1430. doi: 10.1007/s12613-023-2609-6
|
[4] |
C. Hou, W.C. Zhu, B.X. Yan, K. Guan, and L.L. Niu, Analytical and experimental study of cemented backfill and pillar interactions, Int. J. Geomech., 19(2019), No. 8, art. No. 04019080. doi: 10.1061/(ASCE)GM.1943-5622.0001441
|
[5] |
Q.H. Ma, G.S. Liu, X.C. Yang, and L.J. Guo, Physical model investigation on effects of drainage condition and cement addition on consolidation behavior of tailings slurry within backfilled stopes, Int. J. Miner. Metall. Mater., 30(2023), No. 8, p. 1490. doi: 10.1007/s12613-023-2642-5
|
[6] |
Y.Y. Li, W.J. Guo, H.Q. Zhang, and Z.J. Wei, The application of combined GPS.RTK with electronic level on high-precision surface monitoring, Adv. Mater. Res., 718-720(2013), p. 1191. doi: 10.4028/www.scientific.net/AMR.718-720.1191
|
[7] |
Y. Chen, J. Li, H.Z. Li, et al., Revealing land surface deformation over the Yineng backfilling mining area, China, by integrating distributed scatterer SAR interferometry and a mining subsidence model, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 16(2023), p. 3611. doi: 10.1109/JSTARS.2023.3250419
|
[8] |
H.D. Fan, Q. Xu, Z.B. Hu, and S. Du, Using temporarily coherent point interferometric synthetic aperture radar for land subsidence monitoring in a mining region of Western China, J. Appl. Remote Sens, 11(2017), No. 2, art. No. 026003. doi: 10.1117/1.JRS.11.026003
|
[9] |
C.D. Maio, G. Fornaro, D. Gioia, D. Reale, M. Schiattarella, and R. Vassallo, In situ and satellite long-term monitoring of the Latronico landslide, Italy: Displacement evolution, damage to buildings, and effectiveness of remedial works, Eng. Geol., 245(2018), p. 218. doi: 10.1016/j.enggeo.2018.08.017
|
[10] |
W. Lei, S.J. Zhu, C. Jiang, et al., Research on 3D laser scanning monitoring method for mining subsidence based on the auxiliary for probability integral method, KSCE J. Civ. Eng., 25(2021), No. 11, p. 4403. doi: 10.1007/s12205-021-0053-6
|
[11] |
Y.Y. Gu, D.W. Zhou, D.M. Zhang, K. Wu, and B.H. Zhou, Study on subsidence monitoring technology using terrestrial 3D laser scanning without a target in a mining area: An example of Wangjiata coal mine, China, Bull. Eng. Geol. Environ., 79(2020), No. 7, p. 3575. doi: 10.1007/s10064-020-01767-1
|
[12] |
C. Liao, W.L. Luo, D.S. Cai, and M. Li, In situ measurement of rockfill dam settlement using fiber optic gyroscope monitoring system, Struct. Contr. Health Monit., 29(2022), No. 4, art. No. e2917.
|
[13] |
R.C.S.B. Allil, L.A.C. Lima, A.S. Allil, and M.M. Werneck, FBG-based inclinometer for landslide monitoring in tailings dams, IEEE Sens. J., 21(2021), No. 15, p. 16670. doi: 10.1109/JSEN.2021.3081025
|
[14] |
C. Zhang, S.Y. Zhang, and J.Y. Cao, In-place fiber-optic inclinometer based on a vertical cantilever beam and dual FBGs, Opt. Laser Technol., 159(2023), art. No. 108933. doi: 10.1016/j.optlastec.2022.108933
|
[15] |
Y.Q. Wang, S.B. Zhang, L.L. Chen, Y.L. Xie, and Z.F. Wang, Field monitoring on deformation of high rock slope during highway construction: A case study in Wenzhou, China, Int. J. Distrib. Sens. Netw., 15(2019), No. 12, art. No. 1550147719895953.
|
[16] |
V. Bennett, T. Abdoun, and M. Barendse, Evaluation of soft clay field consolidation using MEMS-based in-place inclinometer–accelerometer array, Geotech. Test. J., 38(2015), No. 3, p. 290. doi: 10.1520/GTJ20140048
|
[17] |
D.W. Ha, J.M. Kim, Y. Kim, and H.S. Park, Development and application of a wireless MEMS-based borehole inclinometer for automated measurement of ground movement, Autom. Constr., 87(2018), p. 49. doi: 10.1016/j.autcon.2017.12.011
|
[18] |
M. Khan, X.Q. He, J. Guo, and D.Z. Song, Accurate prediction of indicators for engineering failures in complex mining environments, Eng. Fail. Anal., 155(2024), art. No. 107736. doi: 10.1016/j.engfailanal.2023.107736
|
[19] |
H.W. Jia, B.X. Yan, Z. Yang, and E. Yilmaz, Identification of goaf instability under blasting disturbance using microseismic monitoring technology, Geomech. Geophys. Geo Energy Geo Resour., 9(2023), No. 1, art. No. 142. doi: 10.1007/s40948-023-00681-6
|
[20] |
X.G. Cheng, W. Qiao, and H. He, Study on deep learning methods for coal burst risk prediction based on mining-induced seismicity quantification, Geomech. Geophys. Geo Energy Geo Resour., 9(2023), No. 1, art. No. 145. doi: 10.1007/s40948-023-00684-3
|
[21] |
T.W. Lan, X.T. Guo, Z.J. Zhang, and M.W. Liu, Prediction of microseismic events in rock burst mines based on MEA-BP neural network, Sci. Rep., 13(2023), No. 1, art. No. 9523. doi: 10.1038/s41598-023-35500-1
|
[22] |
C.Y. Liu, G.H. Sun, X.X. Liu, et al., Construction of filling body instability failure warning model under single-side unloading condition, Rock Mech. Rock Eng., 55(2022), No. 7, p. 4257. doi: 10.1007/s00603-022-02864-1
|
[23] |
Q. Yin, J.Y. Wu, C. Zhu, M.C. He, Q.X. Meng, and H.W. Jing, Shear mechanical responses of sandstone exposed to high temperature under constant normal stiffness boundary conditions, Geomech. Geophys. Geo Energy Geo Resour., 7(2021), No. 2, art. No. 35. doi: 10.1007/s40948-021-00234-9
|
[24] |
Q.C. Ran, Y.P. Liang, Q.L. Zou, et al., Experimental investigation on mechanical characteristics of red sandstone under graded cyclic loading and its inspirations for stability of overlying strata, Geomech. Geophys. Geo Energy Geo Resour., 9(2023), No. 1, art. No. 11. doi: 10.1007/s40948-023-00555-x
|
[25] |
L.M. Wang, X.Q. Zhang, S.H. Yin, X.L. Zhang, P.Z. Liu, and I.M.S.K. Ilankoon, Three-dimensional characterisation of pore networks and fluid flow in segregated heaps in the presence of crushed ore and agglomerates, Hydrometallurgy, 219(2023), art. No. 106082. doi: 10.1016/j.hydromet.2023.106082
|
[26] |
H.J. Lu, Y.R. Wang, D.Q. Gan, J. Wu, and X.J. Wu, Numerical investigation of the mechanical behavior of the backfill–rock composite structure under triaxial compression, Int. J. Miner. Metall. Mater., 30(2023), No. 5, p. 802. doi: 10.1007/s12613-022-2554-9
|
[27] |
W.Y. Cai, Z.C. Chang, D.S. Zhang, X.F. Wang, W.H. Cao, and Y.Z. Zhou, Roof filling control technology and application to mine roadway damage in small pit goaf, Int. J. Min. Sci. Technol., 29(2019), No. 3, p. 477. doi: 10.1016/j.ijmst.2018.10.001
|
[28] |
S.H. Yin, Z.P. Yan, X. Chen, et al., Active roof-contact: The future development of cemented paste backfill, Constr. Build. Mater., 370(2023), art. No. 130657. doi: 10.1016/j.conbuildmat.2023.130657
|
[29] |
M.L. Walske, H. McWilliam, J. Doherty, and A. Fourie, Influence of curing temperature and stress conditions on mechanical properties of cementing paste backfill, Can. Geotech. J., 53(2016), No. 1, p. 148. doi: 10.1139/cgj-2014-0502
|
[30] |
M. Helinski, M. Fahey, and A. Fourie, Behavior of cemented paste backfill in two mine stopes: Measurements and modeling, J. Geotech. Geoenviron. Eng., 137(2011), No. 2, p. 171. doi: 10.1061/(ASCE)GT.1943-5606.0000418
|
[31] |
M. Zhong, P. Yang, and Y.P. Hu, Study of instability mechanism and roof caving mode of cementing filling stope: The case study of a nonferrous metal mine in China, Adv. Civ. Eng., 2022(2022), art. No. 1658021.
|
[32] |
K. Ding, F.S. Ma, J. Guo, H.J. Zhao, R. Lu, and F. Liu, Investigation of the mechanism of roof caving in the Jinchuan nickel mine, China, Rock Mech. Rock Eng., 51(2018), No. 4, p. 1215. doi: 10.1007/s00603-017-1374-0
|
[33] |
H.J. Zhao, F.S. Ma, Y.M. Zhang, and J. Guo, Monitoring and mechanisms of ground deformation and ground fissures induced by cut-and-fill mining in the Jinchuan Mine 2, China, Environ. Earth Sci., 68(2013), No. 7, p. 1903. doi: 10.1007/s12665-012-1877-7
|
[34] |
G. Li, Y. Wan, J. Guo, F.S. Ma, H.J. Zhao, and Z.Q. Li, A case study on ground subsidence and backfill deformation induced by multi-stage filling mining in a steeply inclined ore body, Remote Sens., 14(2022), No. 18, art. No. 4555. doi: 10.3390/rs14184555
|
[35] |
T.B. Zhao, Z.Y. Fu, and G. Li, In situ investigation into fracture and subsidence of overburden strata for solid backfill mining, Arab. J. Geosci., 11(2018), No. 14, art. No. 398. doi: 10.1007/s12517-018-3769-y
|
[36] |
D.P. Chen, S.H. Yin, R.F. Yan, Y. Zhou, Y.F. Zhang, and L.M. Wang, State analysis of the inclinometer tube for monitoring relative slippage between backfill and surrounding rock mass, Int. J. Min. Reclam. Environ., 37(2023), No. 10, p. 856. doi: 10.1080/17480930.2023.2245667
|
[37] |
A.M. Fraser and H.L. Swinney, Independent coordinates for strange attractors from mutual information, Phys. Rev. A, 33(1986), No. 2, p. 1134. doi: 10.1103/PhysRevA.33.1134
|
[38] |
M.B. Kennel, R. Brown, and H.D. Abarbanel, Determining embedding dimension for phase-space reconstruction using a geometrical construction, Phys. Rev. A, 45(1992), No. 6, p. 3403. doi: 10.1103/PhysRevA.45.3403
|
[39] |
H. Kantz and T. Schreiber, Nonlinear Time Series Analysis, Cambridge University Press, Cambridge, 2003.
|
[40] |
S. Wallot and D. Mønster, Calculation of average mutual information (AMI) and false-nearest neighbors (FNN) for the estimation of embedding parameters of multidimensional time series in Matlab, Front. Psychol., 9(2018), art. No. 1679. doi: 10.3389/fpsyg.2018.01679
|
[41] |
G.E.P. Box and D.A. Pierce, Distribution of residual autocorrelations in autoregressive-integrated moving average time series models, J. Am. Stat. Assoc., 65(1970), No. 332, p. 1509. doi: 10.1080/01621459.1970.10481180
|
[42] |
D.A. Dickey and W.A. Fuller, Distribution of the estimators for autoregressive time series with a unit root, J. Am. Stat. Assoc., 74(1979), No. 366a, p. 427. doi: 10.1080/01621459.1979.10482531
|
[43] |
H. Akaike, A new look at the statistical model identification, IEEE Trans. Autom. Contr., 19(1974), No. 6, p. 716. doi: 10.1109/TAC.1974.1100705
|
[44] |
G. Schwarz, Estimating the dimension of a model, Ann. Statist., 6(1978), No. 2, p. 461.
|
[45] |
S. Hochreiter and J. Schmidhuber, Long short-term memory, Neural Comput., 9(1997), No. 8, p. 1735. doi: 10.1162/neco.1997.9.8.1735
|
[46] |
A. Vaswani, N. Shazeer, N. Parmar, et al., Attention is all you need, [in] NIPS'17 : Proceedings of the 31st International Conference on Neural Information Processing Systems, California, 2017, p. 6000.
|