留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 10
Oct.  2024

图(4)

数据统计

分享

计量
  • 文章访问数:  666
  • HTML全文浏览量:  190
  • PDF下载量:  40
  • 被引次数: 0
Mohammad Javad Sohrabi, Hamed Mirzadeh, Saeed Sadeghpour, Milad Zolfipour Aghdam, Abdol Reza Geranmayeh, and Reza Mahmudi, Interplay between temperature-dependent strengthening mechanisms and mechanical stability in high-performance austenitic stainless steels, Int. J. Miner. Metall. Mater., 31(2024), No. 10, pp. 2182-2188. https://doi.org/10.1007/s12613-024-2919-3
Cite this article as:
Mohammad Javad Sohrabi, Hamed Mirzadeh, Saeed Sadeghpour, Milad Zolfipour Aghdam, Abdol Reza Geranmayeh, and Reza Mahmudi, Interplay between temperature-dependent strengthening mechanisms and mechanical stability in high-performance austenitic stainless steels, Int. J. Miner. Metall. Mater., 31(2024), No. 10, pp. 2182-2188. https://doi.org/10.1007/s12613-024-2919-3
引用本文 PDF XML SpringerLink
研究论文

高性能奥氏体不锈钢的温度依赖强化机制与机械稳定性之间的相互作用


  • 通讯作者:

    Hamed Mirzadeh    E-mail: hmirzadeh@ut.ac.ir

  • 本文首次比较了变形温度对相变诱导塑性(TRIP)辅助的304L、孪晶诱导可塑性(TWIP)辅助的316L和高合金稳定904L奥氏体不锈钢的影响,以调整力学性能、强化机制和强度–延性协同作用。扫描电镜(SEM)、电子背散射衍射(EBSD)、X射线衍射(XRD)、拉伸试验、加工硬化分析和热力学分析发现:诱导塑性效应导致304L和316L不锈钢的加工硬化行为具有高温依赖性,随着变形温度的升高,亚稳304L不锈钢表现出TRIP、TWIP和诱导塑性机制弱化的顺序;同时也观察到316L不锈钢中TWIP效应的消失。然而,904L超奥氏体不锈钢的固溶强化在宽温度范围内保持良好的拉伸性能,优于304L和316L不锈钢的性能。另外,由于缺乏额外的塑性机制,904L合金的总伸长率对变形温度的依赖性不太明显。这对揭示固溶体强化和相关的高摩擦应力在宽温度范围内获得优异机械性能具有重要的意义。
  • Research Article

    Interplay between temperature-dependent strengthening mechanisms and mechanical stability in high-performance austenitic stainless steels

    + Author Affiliations
    • The effects of deformation temperature on the transformation-induced plasticity (TRIP)-aided 304L, twinning-induced plasticity (TWIP)-assisted 316L, and highly alloyed stable 904L austenitic stainless steels were compared for the first time to tune the mechanical properties, strengthening mechanisms, and strength–ductility synergy. For this purpose, the scanning electron microscopy (SEM), electron backscattered diffraction (EBSD), X-ray diffraction (XRD), tensile testing, work-hardening analysis, and thermodynamics calculations were used. The induced plasticity effects led to a high temperature-dependency of work-hardening behavior in the 304L and 316L stainless steels. As the deformation temperature increased, the metastable 304L stainless steel showed the sequence of TRIP, TWIP, and weakening of the induced plasticity mechanism; while the disappearance of the TWIP effect in the 316L stainless steel was also observed. However, the solid-solution strengthening in the 904L superaustenitic stainless steel maintained the tensile properties over a wide temperature range, surpassing the performance of 304L and 316L stainless steels. In this regard, the dependency of the total elongation on the deformation temperature was less pronounced for the 904L alloy due to the absence of additional plasticity mechanisms. These results revealed the importance of solid–solution strengthening and the associated high friction stress for superior mechanical behavior over a wide temperature range.
    • loading
    • [1]
      J.S. Li, Q.Z. Mao, M. Chen, et al., Enhanced pitting resistance through designing a high-strength 316L stainless steel with heterostructure, J. Mater. Res. Technol., 10(2021), p. 132. doi: 10.1016/j.jmrt.2020.12.005
      [2]
      S.L. Sheng, Y.X. Qiao, R.Z. Zhai, M.Y. Sun, and B. Xu, Processing map and dynamic recrystallization behaviours of 316LN–Mn austenitic stainless steel, Int. J. Miner. Metall. Mater., 30(2023), No. 12, p. 2386. doi: 10.1007/s12613-023-2714-6
      [3]
      M.J. Sohrabi, H. Mirzadeh, S. Sadeghpour, and R. Mahmudi, Grain size dependent mechanical behavior and TRIP effect in a metastable austenitic stainless steel, Int. J. Plast., 160(2023), art. No. 103502. doi: 10.1016/j.ijplas.2022.103502
      [4]
      M.J. Sohrabi, M. Naghizadeh, and H. Mirzadeh, Deformation-induced martensite in austenitic stainless steels: A review, Arch. Civ. Mech. Eng., 20(2020), No. 4, art. No. 124. doi: 10.1007/s43452-020-00130-1
      [5]
      K. Kishore, R.G. Kumar, and A.K. Chandan, Critical assessment of the strain-rate dependent work hardening behaviour of AISI 304 stainless steel, Mater. Sci. Eng. A, 803(2021), art. No. 140675. doi: 10.1016/j.msea.2020.140675
      [6]
      A.A. Tiamiyu, M. Eskandari, M. Sanayei, A.G. Odeshi, and J.A. Szpunar, Mechanical behavior and high-resolution EBSD investigation of the microstructural evolution in AISI 321 stainless steel under dynamic loading condition, Mater. Sci. Eng. A, 673(2016), p. 400. doi: 10.1016/j.msea.2016.07.095
      [7]
      M. Pozuelo, J.E. Wittig, J.A. Jiménez, and G. Frommeyer, Enhanced mechanical properties of a novel high-nitrogen Cr–Mn–Ni–Si austenitic stainless steel via TWIP/TRIP effects, Metall. Mater. Trans. A, 40(2009), No. 8, p. 1826. doi: 10.1007/s11661-009-9863-8
      [8]
      A. Khosravifard, A. Hamada, A. Järvenpää, and P. Karjalainen, Enhancement of grain structure and mechanical properties of a high-Mn twinning-induced plasticity steel bearing Al–Si by fast-heating annealing, Mater. Sci. Eng. A, 795(2020), art. No. 139949. doi: 10.1016/j.msea.2020.139949
      [9]
      F. Tehovnik, B. Žužek, B. Arh, J. Burja, and B. Podgornik, Hot rolling of the superaustenitic stainless steel AISI 904L, Mater. Tehnol., 48(2014), No. 1, p. 137.
      [10]
      D. Molnár, G. Engberg, W. Li, and L. Vitos, Deformation properties of austenitic stainless steels with different stacking fault energies, Mater. Sci. Forum, 941(2018), p. 190. doi: 10.4028/www.scientific.net/MSF.941.190
      [11]
      G. Stornelli, M. Gaggiotti, S. Mancini, et al., Recrystallization and grain growth of AISI 904L super-austenitic stainless steel: A multivariate regression approach, Metals, 12(2022), No. 2, art. No. 200. doi: 10.3390/met12020200
      [12]
      S.L. Wei, F. He, and C.C. Tasan, Metastability in high-entropy alloys: A review, J. Mater. Res., 33(2018), No. 19, p. 2924. doi: 10.1557/jmr.2018.306
      [13]
      T.S. Byun, N. Hashimoto, and K. Farrell, Temperature dependence of strain hardening and plastic instability behaviors in austenitic stainless steels, Acta Mater., 52(2004), No. 13, p. 3889. doi: 10.1016/j.actamat.2004.05.003
      [14]
      J. Talonen and H. Hänninen, Formation of shear bands and strain-induced martensite during plastic deformation of metastable austenitic stainless steels, Acta Mater., 55(2007), No. 18, p. 6108. doi: 10.1016/j.actamat.2007.07.015
      [15]
      A. Saeed-Akbari, J. Imlau, U. Prahl, and W. Bleck, Derivation and variation in composition-dependent stacking fault energy maps based on subregular solution model in high-manganese steels, Metall. Mater. Trans. A, 40(2009), No. 13, p. 3076. doi: 10.1007/s11661-009-0050-8
      [16]
      D. Molnár, X. Sun, S. Lu, W. Li, G. Engberg, and L. Vitos, Effect of temperature on the stacking fault energy and deformation behaviour in 316L austenitic stainless steel, Mater. Sci. Eng. A, 759(2019), p. 490. doi: 10.1016/j.msea.2019.05.079
      [17]
      F. Najafkhani, S. Kheiri, B. Pourbahari, and H. Mirzadeh, Recent advances in the kinetics of normal/abnormal grain growth: A review, Arch. Civ. Mech. Eng., 21(2021), No. 1, art. No. 29. doi: 10.1007/s43452-021-00185-8
      [18]
      M. Naghizadeh and H. Mirzadeh, Elucidating the effect of alloying elements on the behavior of austenitic stainless steels at elevated temperatures, Metall. Mater. Trans. A, 47(2016), No. 12, p. 5698. doi: 10.1007/s11661-016-3764-4
      [19]
      K.H. Lo, C.H. Shek, and J.K.L. Lai, Recent developments in stainless steels, Mater. Sci. Eng. R Rep., 65(2009), No. 4-6, p. 39. doi: 10.1016/j.mser.2009.03.001
      [20]
      L. Romero-Resendiz, M. El-Tahawy, T. Zhang, et al., Heterostructured stainless steel: Properties, current trends, and future perspectives, Mater. Sci. Eng. R, 150(2022), art. No. 100691. doi: 10.1016/j.mser.2022.100691
      [21]
      Y.X. Hou, T. Liu, D.D. He, et al., Sustaining strength-ductility synergy of SLM Fe50Mn30Co10Cr10 metastable high-entropy alloy by Si addition, Intermetallics, 145(2022), art. No. 107565. doi: 10.1016/j.intermet.2022.107565
      [22]
      S. Martin, S. Wolf, U. Martin, L. Krüger, and D. Rafaja, Deformation mechanisms in austenitic TRIP/TWIP steel as a function of temperature, Metall. Mater. Trans. A, 47(2016), No. 1, p. 49. doi: 10.1007/s11661-014-2684-4
      [23]
      S.N. Li, P.J. Withers, S. Kabra, and K. Yan, The behaviour and deformation mechanisms for 316L stainless steel deformed at cryogenic temperatures, Mater. Sci. Eng. A, 880(2023), art. No. 145279. doi: 10.1016/j.msea.2023.145279
      [24]
      R.E. Schramm and R.P. Reed, Stacking fault energies of seven commercial austenitic stainless steels, Metall. Trans. A, 6(1975), No. 7, p. 1345. doi: 10.1007/BF02641927
      [25]
      M.J. Sohrabi, H. Mirzadeh, S. Sadeghpour, and R. Mahmudi, Explaining the drop of work-hardening rate and limitation of transformation-induced plasticity effect in metastable stainless steels during tensile deformation, Scripta Mater., 231(2023), art. No. 115465. doi: 10.1016/j.scriptamat.2023.115465
      [26]
      W.D. Li, D. Xie, D.Y. Li, Y. Zhang, Y.F. Gao, and P.K. Liaw, Mechanical behavior of high-entropy alloys, Prog. Mater. Sci., 118(2021), art. No. 100777. doi: 10.1016/j.pmatsci.2021.100777
      [27]
      Y.T. Wei, Q. Lu, Z.D. Kou, T. Feng, and Q.Q. Lai, Microstructure and strain hardening behavior of the transformable 316L stainless steel processed by cryogenic pre-deformation, Mater. Sci. Eng. A, 862(2023), art. No. 144424. doi: 10.1016/j.msea.2022.144424
      [28]
      M.H. Huang, L.Y. Wang, C.C. Wang, A. Mogucheva, and W. Xu, Characterization of deformation-induced martensite with various AGSs upon Charpy impact loading and correlation with transformation mechanisms, Mater. Charact., 184(2022), art. No. 111704. doi: 10.1016/j.matchar.2021.111704
      [29]
      M.J. Sohrabi, H. Mirzadeh, and C. Dehghanian, Significance of martensite reversion and austenite stability to the mechanical properties and transformation-induced plasticity effect of austenitic stainless steels, J. Mater. Eng. Perform., 29(2020), No. 5, p. 3233. doi: 10.1007/s11665-020-04798-7
      [30]
      H. Chung, D.W. Kim, W.J. Cho, et al., Effect of solid-solution strengthening on deformation mechanisms and strain hardening in medium-entropy V1– xCr xCoNi alloys, J. Mater. Sci. Technol., 108(2022), p. 270. doi: 10.1016/j.jmst.2021.07.042
      [31]
      S.I. Hong and C. Laird, Mechanisms of slip mode modification in F.C.C. solid solutions, Acta Metall. Mater., 38(1990), No. 8, p. 1581. doi: 10.1016/0956-7151(90)90126-2
      [32]
      M. Amirifard, A. Zarei Hanzaki, H.R. Abedi, N. Eftekhari, and Q. Wang, Toward superior fatigue and corrosion fatigue crack initiation resistance of Sanicro 28 pipe super austenitic stainless steel, J. Mater. Res. Technol., 17(2022), p. 1672. doi: 10.1016/j.jmrt.2022.01.109
      [33]
      A. Abu-Odeh and M. Asta, Modeling the effect of short-range order on cross-slip in an FCC solid solution, Acta Mater., 226(2022), art. No. 117615. doi: 10.1016/j.actamat.2021.117615
      [34]
      J.S. Li, Z.C. Zhou, S.Z. Wang, et al., Deformation mechanisms and enhanced mechanical properties of 304L stainless steel at liquid nitrogen temperature, Mater. Sci. Eng. A, 798(2020), art. No. 140133. doi: 10.1016/j.msea.2020.140133

    Catalog


    • /

      返回文章
      返回