Cite this article as:

Yiran Li, Zhongheng Fu, Xiangyang Yu, Zhihui Jin, Haiyan Gong, Lingwei Ma, Xiaogang Li, and Dawei Zhang, Developing an atmospheric aging evaluation model of acrylic coatings: A semi-supervised machine learning algorithm, Int. J. Miner. Metall. Mater., 31(2024), No. 7, pp.1617-1627. https://dx.doi.org/10.1007/s12613-024-2921-9
Yiran Li, Zhongheng Fu, Xiangyang Yu, Zhihui Jin, Haiyan Gong, Lingwei Ma, Xiaogang Li, and Dawei Zhang, Developing an atmospheric aging evaluation model of acrylic coatings: A semi-supervised machine learning algorithm, Int. J. Miner. Metall. Mater., 31(2024), No. 7, pp.1617-1627. https://dx.doi.org/10.1007/s12613-024-2921-9
引用本文 PDF XML SpringerLink

一种丙烯酸涂料大气老化评估模型: 半监督式机器学习算法

摘要: 丙烯酸涂料因其优异的耐候性和装饰性而被广泛应用于建筑和汽车工业,然而,其在复杂多变的大气环境中的老化性能仍然是材料科学领域关注的重点。为了探索丙烯酸涂料在不同气候条件下的大气老化行为,本研究在中国13个具有代表性气候的环境中进行了为期两年的实地老化暴露实验。研究分析了567个城市的老化数据,包括11个关键环境因素,以此来建立丙烯酸涂料的大气老化评估模型。通过采用随机森林算法和斯皮尔曼相关性分析的组合,实现了对数据集的有效降维,减少了数据冗余和多重共线性问题。在建模过程中,以环境因素为输入变量,选取了丙烯酸涂层在3.5wt%氯化钠溶液中的电化学阻抗谱的低频阻抗模量值作为输出变量,构建了一个半监督协同训练的回归模型。与传统的监督学习算法(如支持向量机)相比,新模型具备了更高的预测准确性。此外,该模型不仅为快速评估丙烯酸涂料的老化性能提供了一种新的方法论,也为其他有机涂料的老化性能评估提供了可借鉴的技术路径。总体而言,这项研究为涂料工业提供了一种创新的、可靠的评估工具,有助于推动材料科学在涂料老化领域的研究和应用。

 

Developing an atmospheric aging evaluation model of acrylic coatings: A semi-supervised machine learning algorithm

Abstract: To study the atmospheric aging of acrylic coatings, a two-year aging exposure experiment was conducted in 13 representative climatic environments in China. An atmospheric aging evaluation model of acrylic coatings was developed based on aging data including 11 environmental factors from 567 cities. A hybrid method of random forest and Spearman correlation analysis was used to reduce the redundancy and multicollinearity of the data set by dimensionality reduction. A semi-supervised collaborative trained regression model was developed with the environmental factors as input and the low-frequency impedance modulus values of the electrochemical impedance spectra of acrylic coatings in 3.5wt% NaCl solution as output. The model improves accuracy compared to supervised learning algorithms model (support vector machines model). The model provides a new method for the rapid evaluation of the aging performance of acrylic coatings, and may also serve as a reference to evaluate the aging performance of other organic coatings.

 

/

返回文章
返回