Cite this article as: |
Yiran Li, Zhongheng Fu, Xiangyang Yu, Zhihui Jin, Haiyan Gong, Lingwei Ma, Xiaogang Li, and Dawei Zhang, Developing an atmospheric aging evaluation model of acrylic coatings: A semi-supervised machine learning algorithm, Int. J. Miner. Metall. Mater., 31(2024), No. 7, pp. 1617-1627. https://doi.org/10.1007/s12613-024-2921-9 |
富忠恒 E-mail: fuzhongheng@ustb.edu.cn
龚海燕 E-mail: ghaiyan@ustb.edu.cn
[1] |
X.G. Li, D.W. Zhang, Z.Y. Liu, Z. Li, C.W. Du, and C.F. Dong, Materials science: Share corrosion data, Nature, 527(2015), No. 7579, p. 441. doi: 10.1038/527441a
|
[2] |
L. Wang, J. Gao, X.G. Li, and J.W. Hu, Effect of photo-radiation on anti-corrosion and protection performance of acrylic polyurethane coating, J. Univ. Sci. Technol. Beijing, 30(2008), No. 2, p. 152.
|
[3] |
N. Guermazi, K. Elleuch, and H.F. Ayedi, The effect of time and aging temperature on structural and mechanical properties of pipeline coating, Mater. Des., 30(2009), No. 6, p. 2006. doi: 10.1016/j.matdes.2008.09.003
|
[4] |
D.Y. Perera, Effect of thermal and hygroscopic history on physical ageing of organic coatings, Prog. Org. Coat., 44(2002), No. 1, p. 55. doi: 10.1016/S0300-9440(01)00241-7
|
[5] |
V.O. Startsev, M.P. Lebedev, K.A. Khrulev, M.V. Molokov, A.S. Frolov, and T.A. Nizina, Effect of outdoor exposure on the moisture diffusion and mechanical properties of epoxy polymers, Polym. Test., 65(2018), p. 281. doi: 10.1016/j.polymertesting.2017.12.007
|
[6] |
S. Geng, J. Gao, X.G. Li, and Q.L. Zhao, Aging behaviors of acrylic polyurethane coatings during UV irradiation, J. Univ. Sci. Technol. Beijing, 31(2009), No. 6, p. 752.
|
[7] |
M.D. Yu, C.Q. Fan, F. Ge, Q.Y. Lu, X. Wang, and Z.Y. Cui, Anticorrosion behavior of organic offshore coating systems in UV, salt spray and low temperature alternation simulated Arctic offshore environment, Mater. Today Commun., 28(2021), art. No. 102545. doi: 10.1016/j.mtcomm.2021.102545
|
[8] |
K.Y. Che, P. Lyu, F. Wan, and M.L. Ma, Investigations on aging behavior and mechanism of polyurea coating in marine atmosphere, Materials, 12(2019), No. 21, art. No. 3636. doi: 10.3390/ma12213636
|
[9] |
J. Gao, C. Li, Z. Lv, R. Wang, D.Q. Wu, and X.G. Li, Correlation between the surface aging of acrylic polyurethane coatings and environmental factors, Prog. Org. Coat., 132(2019), p. 362. doi: 10.1016/j.porgcoat.2019.04.009
|
[10] |
T.C. da Silva, S. Mallarino, S. Touzain, and I.C.P. Margarit-Mattos, DMA, EIS and thermal fatigue of organic coatings, Electrochim. Acta, 318(2019), p. 989. doi: 10.1016/j.electacta.2019.06.066
|
[11] |
P.L. Gac, D. Choqueuse, D. Melot, B. Melve, and L. Meniconi, Life time prediction of polymer used as thermal insulation in offshore oil production conditions: Ageing on real structure and reliability of prediction, Polym. Test., 34(2014), p. 168. doi: 10.1016/j.polymertesting.2014.01.011
|
[12] |
Y.D. Lv, Y.J. Huang, J.L. Yang, et al., Outdoor and accelerated laboratory weathering of polypropylene: A comparison and correlation study, Polym. Degrad. Stab., 112(2015), p. 145. doi: 10.1016/j.polymdegradstab.2014.12.023
|
[13] |
D.Q. Wu, D.W. Zhang, S.P. Liu, et al., Prediction of polycarbonate degradation in natural atmospheric environment of China based on BP-ANN model with screened environmental factors, Chem. Eng. J., 399(2020), art. No. 125878. doi: 10.1016/j.cej.2020.125878
|
[14] |
W. Sai, G.B. Chai, and N. Srikanth, Fatigue life prediction of GLARE composites using regression tree ensemble-based machine learning model, Adv. Theory Simul., 3(2020), No. 6, art. No. 2000048. doi: 10.1002/adts.202000048
|
[15] |
J.G. Kuang and Z.L. Long, Prediction model for corrosion rate of low-alloy steels under atmospheric conditions using machine learning algorithms, Int. J. Miner. Metall. Mater., 31(2024), No. 2, p. 337. doi: 10.1007/s12613-023-2679-5
|
[16] |
M.W. Wu, W. Yong, C.Q. Fu, C.M. Ma, and R.P. Liu, Machine learning-assisted efficient design of Cu-based shape memory alloy with specific phase transition temperature, Int. J. Miner. Metall. Mater., 31(2024), No. 4, p. 773. doi: 10.1007/s12613-023-2767-6
|
[17] |
X.J. Yang, J.K. Yang, Y. Yang, et al., Data-mining and atmospheric corrosion resistance evaluation of Sn- and Sb-additional low alloy steel based on big data technology, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 825. doi: 10.1007/s12613-022-2457-9
|
[18] |
Z.B. Pei, D.W. Zhang, Y.J. Zhi, et al., Towards understanding and prediction of atmospheric corrosion of an Fe/Cu corrosion sensor via machine learning, Corros. Sci., 170(2020), art. No. 108697. doi: 10.1016/j.corsci.2020.108697
|
[19] |
Y.P. Diao, L.C. Yan, and K.W. Gao, Improvement of the machine learning-based corrosion rate prediction model through the optimization of input features, Mater. Des., 198(2021), art. No. 109326. doi: 10.1016/j.matdes.2020.109326
|
[20] |
Y.J. Zhi, Z.H. Jin, L. Lu, et al., Improving atmospheric corrosion prediction through key environmental factor identification by random forest-based model, Corros. Sci., 178(2021), art. No. 109084. doi: 10.1016/j.corsci.2020.109084
|
[21] |
A. Roy, M.F.N. Taufique, H. Khakurel, R. Devanathan, D.D. Johnson, and G. Balasubramanian, Machine-learning-guided descriptor selection for predicting corrosion resistance in multi-principal element alloys, NPJ Mater. Degrad., 6(2022), art. No. 9. doi: 10.1038/s41529-021-00208-y
|
[22] |
J.E. van Engelen and H.H. Hoos, A survey on semi-supervised learning, Mach. Learn., 109(2020), No. 2, p. 373. doi: 10.1007/s10994-019-05855-6
|
[23] |
Z.H. Zhou and M. Li, Semisupervised regression with cotraining-style algorithms, IEEE Trans. Knowl. Data Eng., 19(2007), No. 11, p. 1479. doi: 10.1109/TKDE.2007.190644
|
[24] |
L. Ma and X.L. Wang, Semi-supervised regression based on support vector machine co-training, Comput. Eng. Appl., 47(2011), No. 3, p. 177.
|
[25] |
L. Breiman, Random forests, Mach. Learn., 45(2001), No. 1, p. 5. doi: 10.1023/A:1010933404324
|
[26] |
C.W. Xiao, J.Q. Ye, R.M. Esteves, and C.M. Rong, Using Spearman’s correlation coefficients for exploratory data analysis on big dataset, Concurr. Comput. Pract. Exp., 28(2016), No. 14, p. 3866. doi: 10.1002/cpe.3745
|
[27] |
J.W. Liu, Y. Liu, and X.L. Luo, Semi-supervised learning methods, Chin. J. Comput., 38(2015), No. 8, p. 1592.
|
[28] |
Z.H. Zhou, Machine Learning, Tsinghua University Publishing House Co., ltd, Beijing, 2016, p. 225.
|
[29] |
S.F. Ding, B.J. Qi, and H.Y. Tan, An overview on theory and algorithm of support vector machines, J. Univ. Electron. Sci. Technol. China, 40(2011), No. 1, p. 2.
|
[30] |
J.K. Wang, L.W. Ma, X. Guo, et al., Two birds with one stone: Nanocontainers with synergetic inhibition and corrosion sensing abilities towards intelligent self-healing and self-reporting coating, Chem. Eng. J., 433(2022), art. No. 134515. doi: 10.1016/j.cej.2022.134515
|
[31] |
Y.X. Xu, C.W. Yan, J. Ding, Y.M. Gao, and C.N. Cao, UV photo-degradation of coatings, J. Chin. Soc. Corros. Prot., 24(2004), No. 3, p. 168.
|
[32] |
X.F. Yang, J. Li, S.G. Croll, D.E. Tallman, and G.P. Bierwagen, Degradation of low gloss polyurethane aircraft coatings under UV and prohesion alternating exposures, Polym. Degrad. Stab., 80(2003), No. 1, p. 51. doi: 10.1016/S0141-3910(02)00382-8
|
[33] |
D. Feldman, Polymer weathering: Photo-oxidation, J. Polym. Environ., 10(2002), No. 4, p. 163. doi: 10.1023/A:1021148205366
|
[34] |
H.L. Qin, S.M. Zhang, H.J. Liu, S.B. Xie, M.S. Yang, and D.Y. Shen, Photo-oxidative degradation of polypropylene/montmorillonite nanocomposites, Polymer, 46(2005), No. 9, p. 3149. doi: 10.1016/j.polymer.2005.01.087
|
[35] |
B.W. Johnson and R. McIntyre, Analysis of test methods for UV durability predictions of polymer coatings, Prog. Org. Coat., 27(1996), No. 1-4, p. 95. doi: 10.1016/0300-9440(94)00525-7
|
[36] |
K. Zhang, L. Hao, M. Du, J. Mi, J.N. Wang, and J.P. Meng, A review on thermal stability and high temperature induced ageing mechanisms of solar absorber coatings, Renewable Sustainable Energy Rev., 67(2017), p. 1282. doi: 10.1016/j.rser.2016.09.083
|
[37] |
C.V. Lacombre, G. Bouvet, D. Trinh, S. Mallarino, and S. Touzain, Effect of pigment and temperature onto swelling and water uptake during organic coating ageing, Prog. Org. Coat., 124(2018), p. 249. doi: 10.1016/j.porgcoat.2017.11.022
|
[38] |
P. Sivakumar, S.M. Du, M. Selter, I. Ballard, J. Daye, and J. Cho, Long-term thermal aging of parylene conformal coating under high humidity and its effects on tin whisker mitigation, Polym. Degrad. Stab., 191(2021), art. No. 109667. doi: 10.1016/j.polymdegradstab.2021.109667
|
[39] |
S.R. Taylor and P. Moongkhamklang, The delineation of local water interaction with epoxy coatings using fluorescence microscopy, Prog. Org. Coat., 54(2005), No. 3, p. 205. doi: 10.1016/j.porgcoat.2005.05.006
|
[40] |
Y.J. Guo, H. Yan, and F. Xiao, Accelerated thermal-oxygen aging test for epoxy resin, J. Tsinghua Univ. (Sci. Tech.), 40(2000), No. 7, p. 1.
|
[41] |
S.Y. Zhang, S.J. Li, X.W. Luo, and W.F. Zhou, Mechanism of the significant improvement in corrosion protection by lowering water sorption of the coating, Corros. Sci., 42(2000), No. 12, p. 2037. doi: 10.1016/S0010-938X(00)00042-1
|