留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

图(13)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  325
  • HTML全文浏览量:  141
  • PDF下载量:  18
  • 被引次数: 0
Youpeng Xu, Sheng Pang, Liangwei Cong, Guoyu Qian, Dong Wang, Laishi Li, Yusheng Wu, and Zhi Wang, Overview of in-situ oxygen production technologies for lunar resources, Int. J. Miner. Metall. Mater.,(2025). https://doi.org/10.1007/s12613-024-2925-5
Cite this article as:
Youpeng Xu, Sheng Pang, Liangwei Cong, Guoyu Qian, Dong Wang, Laishi Li, Yusheng Wu, and Zhi Wang, Overview of in-situ oxygen production technologies for lunar resources, Int. J. Miner. Metall. Mater.,(2025). https://doi.org/10.1007/s12613-024-2925-5
引用本文 PDF XML SpringerLink
综述

月球资源原位制氧技术综述


  • 通讯作者:

    庞昇    E-mail: spang@ipe.ac.cn

    钱国余    E-mail: gyqian@ipe.ac.cn

    吴玉胜    E-mail: wuyus@sut.edu.cn

    王志    E-mail: zwang@ipe.ac.cn

文章亮点

  • (1) 详细介绍了月面环境及资源特征。
  • (2) 系统介绍了月面制氧潜在技术。
  • (3) 通过对比分析总结出适宜月面制氧的关键技术。
  • 月球以其丰富的资源和独特的环境特征,成为人类开发地外资源、探索深空的理想中转站和试验场。氧气,作为人类开展月面活动的重要生保物资,同时也是潜在的月面燃料推进剂,其规模化供应是开发月球的重要基础。基于月壤为多金属氧化物以及月壤中含有水冰的特点,以月壤为原料,在月面开展原位制氧是未来人类常驻月球的关键。本文详细综述了地面先进制氧技术,深入探讨了水冰电解法、金属氧化物两步制氧法及金属氧化物一步制氧法的原理、工艺、装置及优缺点。两步制氧法包括氢还原、碳热还原和湿法冶金,一步制氧法涵盖了氟化/氯化、高温分解、熔盐电解及熔融电解。最终,基于对月球资源及特殊环境的综合分析,通过原材料、设备、技术及经济可行性四个维度进行比较,对各种制氧技术月面可操作性进行了排序,氧化物熔融电解技术被认为是月面原位制氧最具前景的方法。鉴于熔融月壤的高温腐蚀特性以及月球的低重力环境,开发廉价且稳定的惰性阳极以及便于收集氧气的电解装置,对于在月球上推广氧化物熔融电解制氧技术至关重要。本综述有望为月球原位制氧技术提供重要参考,并为即将到来的月球探索计划提供技术支撑。
  • Review

    Overview of in-situ oxygen production technologies for lunar resources

    + Author Affiliations
    • The rich resources and unique environment of the Moon make it an ideal location for human expansion and the utilization of extraterrestrial resources. Oxygen, crucial for supporting human life on the Moon, can be extracted from lunar regolith, which is highly rich in oxygen and contains polymetallic oxides. This oxygen and metal extraction can be achieved using existing metallurgical techniques. Furthermore, the ample reserves of water ice on the Moon offer another means for oxygen production. This paper offers a detailed overview of the leading technologies for achieving oxygen production on the Moon, drawing from an analysis of lunar resources and environmental conditions. It delves into the principles, processes, advantages, and drawbacks of water-ice electrolysis, two-step oxygen production from lunar regolith, and one-step oxygen production from lunar regolith. The two-step methods involve hydrogen reduction, carbothermal reduction, and hydrometallurgy, while the one-step methods encompass fluorination/chlorination, high-temperature decomposition, molten salt electrolysis, and molten regolith electrolysis (MOE). Following a thorough comparison of raw materials, equipment, technology, and economic viability, MOE is identified as the most promising approach for future in-situ oxygen production on the Moon. Considering the corrosion characteristics of molten lunar regolith at high temperatures, along with the Moon’s low-gravity environment, the development of inexpensive and stable inert anodes and electrolysis devices that can easily collect oxygen is critical for promoting MOE technology on the Moon. This review significantly contributes to our understanding of in-situ oxygen production technologies on the Moon and supports upcoming lunar exploration initiatives.
    • loading
    • [1]
      O.A. Chon-Torres and C.A. Murga-Moreno, Conceptual discussion around the notion of the human being as an inter and multiplanetary species, Int. J. Astrobiol., 20(2021), No. 5, p. 327. doi: 10.1017/S1473550421000197
      [2]
      J.W. Delano, Scientific exploration of the Moon, Elements, 5(2009), No. 1, p. 11. doi: 10.2113/gselements.5.1.11
      [3]
      C.L. Li, H. Hu, M.F. Yang, et al., Characteristics of the lunar samples returned by the Chang’e-5 mission, Natl. Sci. Rev., 9(2021), No. 2, art. No. nwab188. doi: 10.1093/nsr/nwab188
      [4]
      T.A. Giguere, G.J. Taylor, B.R. Hawke, and P.G. Lucey, The titanium contents of lunar mare basalts, Meteorit. Planet. Sci., 35(2000), No. 1, p. 193. doi: 10.1111/j.1945-5100.2000.tb01985.x
      [5]
      L. Xu, Y.L. Zou, and J.Z. Liu, Helium-3 in lunar regolith, Acta Mineral. Sinica, 23(2003), No. 4, p. 374.
      [6]
      Z.Y. Ouyang, Introduction to Lunar Science, China Astronautic Publishing House, Beijing, 2005, p. 307.
      [7]
      L.A. Taylor and W.D. Carrier III, Production of oxygen on the moon: Which processes are best and why, AIAA J., 30(1992), No. 12, p. 2858. doi: 10.2514/3.48974
      [8]
      A. Meurisse and J. Carpenter, Past, present and future rationale for space resource utilisation, Planet. Space Sci., 182(2020), art. No. 104853. doi: 10.1016/j.pss.2020.104853
      [9]
      M. Baldry, N. Gurieff, and D. Keogh, Imagining sustainable human ecosystems with power-to-x in situ resource utilisation technology, Acta Astronaut., 192(2022), p. 190. doi: 10.1016/j.actaastro.2021.12.031
      [10]
      M.Q. Yu, E. Budiyanto, and H. Tüysüz, Principles of water electrolysis and recent progress in cobalt-, nickel-, and iron-based oxides for the oxygen evolution reaction, Angew. Chem. Int. Ed., 134(2022), No. 1, art. No. e202103824. doi: 10.1002/ange.202103824
      [11]
      L.R. Utreja, Lunar environment, Appl. Mech. Rev., 46(1993), No. 6, p. 278. doi: 10.1115/1.3120356
      [12]
      M. Anand, I.A. Crawford, M. Balat-Pichelin, et al., A brief review of chemical and mineralogical resources on the Moon and likely initial in situ resource utilization (ISRU) applications, Planet. Space Sci., 74(2012), No. 1, p. 42. doi: 10.1016/j.pss.2012.08.012
      [13]
      C. Li, W.H. Ma, Y. Li, and K.X. Wei, Metallurgical performance evaluation of space-weathered Chang’e-5 lunar soil, Int. J. Miner. Metall. Mater., 31(2024), No. 6, p. 1241. doi: 10.1007/s12613-023-2800-9
      [14]
      K. Watson, B.C. Murray, and H. Brown, The behavior of volatiles on the lunar surface, J. Geophys. Res., 66(1961), No. 9, p. 3033. doi: 10.1029/JZ066i009p03033
      [15]
      G.A. Neumann, J.F. Cavanaugh, X.L. Sun, et al., Bright and dark polar deposits on mercury: Evidence for surface volatiles, Science, 339(2013), No. 6117, p. 296. doi: 10.1126/science.1229764
      [16]
      A.N. Deutsch, G.A. Neumann, and J.W. Head, New evidence for surface water ice in small-scale cold traps and in three large craters at the north polar region of Mercury from the Mercury Laser Altimeter, Geophys. Res. Lett., 44(2017), No. 18, p. 9233. doi: 10.1002/2017GL074723
      [17]
      T. Platz, A. Nathues, N. Schorghofer, et al., Surface water-ice deposits in the northern shadowed regions of Ceres, Nat. Astron., 1(2017), art. No. 0007. doi: 10.1038/s41550-016-0007
      [18]
      A.T. Basilevsky, A.M. Abdrakhimov, and V.A. Dorofeeva, Water and other volatiles on the moon: A review, Sol. Syst. Res., 46(2012), No. 2, p. 89. doi: 10.1134/S0038094612010017
      [19]
      I.A. Crawford, Lunar resources: A review, Prog. Phys. Geogr., 39(2015), No. 2, p. 137. doi: 10.1177/0309133314567585
      [20]
      E.A. Fisher, P.G. Lucey, M. Lemelin, et al., Evidence for surface water ice in the lunar polar regions using reflectance measurements from the Lunar Orbiter Laser Altimeter and temperature measurements from the Diviner Lunar Radiometer Experiment, Icarus, 292(2017), p. 74. doi: 10.1016/j.icarus.2017.03.023
      [21]
      S. Li, P.G. Lucey, R.E. Milliken, et al., Direct evidence of surface exposed water ice in the lunar polar regions, Proc. Natl. Acad. Sci. U.S.A., 115(2018), No. 36, p. 8907. doi: 10.1073/pnas.1802345115
      [22]
      W. Yang and Z.L. Pan, Lunar “local specialties”: From Apollo 11 to Chang’e 5, Bull. Mineral., Petrol. Geochem., 42(2023), No. 6, p. 1424.
      [23]
      E. Hill, M.J. Mellin, B. Deane, Y. Liu, and L.A. Taylor, Apollo sample 70051 and high- and low-Ti lunar soil simulants MLS-1A and JSC-1A: Implications for future lunar exploration, J. Geophys. Res.: Planet, 112(2007), No. E2, art. No. E02006. doi: 10.1029/2006JE002767
      [24]
      H. Shi, P. Li, Z.S. Yang, et al., Extracting oxygen from Chang’e-5 lunar regolith simulants, ACS Sustainable Chem. Eng., 10(2022), No. 41, p. 13661. doi: 10.1021/acssuschemeng.2c03545
      [25]
      Y.C. Zheng, S.J. Wang, Z.Y. Ouyang, et al., CAS-1 lunar soil simulant, Adv. Space Res., 43(2009), No. 3, p. 448. doi: 10.1016/j.asr.2008.07.006
      [26]
      C.Y. Li, K.Y. Xie, A.M. Liu, and Z.N. Shi, The preparation and characterization of NEU-1 lunar soil simulants, JOM, 71(2019), No. 4, p. 1471. doi: 10.1007/s11837-019-03362-6
      [27]
      H. Zhang, X. Zhang, G. Zhang, et al., Size, morphology, and composition of lunar samples returned by Chang’e-5 mission, Sci. China Phys. Mech. Astron., 65(2021), No. 2, art. No. 229511.
      [28]
      Z. Guo, C. Li, Y. Li, et al., Vapor-deposited digenite in Chang’e-5 lunar soil, Sci. Bull., 68(2023), No. 7, p. 723. doi: 10.1016/j.scib.2023.03.020
      [29]
      C. Li, Z. Guo, Y. Li, et al., Impact-driven disproportionation origin of nanophase iron particles in Chang’e-5 lunar soil sample, Nat. Astron., 6(2022), No. 10, p. 1156. doi: 10.1038/s41550-022-01763-3
      [30]
      Z. Guo, C. Li, Y. Li, et al., Sub-microscopic magnetite and metallic iron particles formed by eutectic reaction in Chang’e-5 lunar soil, Nat. Commun., 13(2022), No. 1, art. No. 7177. doi: 10.1038/s41467-022-35009-7
      [31]
      S. Hu, H.C. He, J.L. Ji, et al., A dry lunar mantle reservoir for young mare basalts of Chang’e-5, Nature, 600(2021), No. 7887, p. 49. doi: 10.1038/s41586-021-04107-9
      [32]
      H.C. Tian, H. Wang, Y. Chen, et al., Non-KREEP origin for Chang’e-5 basalts in the Procellarum KREEP Terrane, Nature, 600(2021), p. 59. doi: 10.1038/s41586-021-04119-5
      [33]
      Q.L. Li, Q. Zhou, Y. Liu, et al., Two-billion-year-old volcanism on the Moon from Chang’e-5 basalts, Nature, 600(2021), No. 7887, p. 54. doi: 10.1038/s41586-021-04100-2
      [34]
      G.H. Just, K. Smith, K.H. Joy, and M.J. Roy, Parametric review of existing regolith excavation techniques for lunar in situ Resource Utilisation (ISRU) and recommendations for future excavation experiments, Planet. Space Sci., 180(2020), art. No. 104746. doi: 10.1016/j.pss.2019.104746
      [35]
      J.Z. Cai, J.S. Deng, L. Wang, et al., Reagent types and action mechanisms in ilmenite flotation: A review, Int. J. Miner. Metall. Mater., 29(2022), No. 9, p. 1656. doi: 10.1007/s12613-021-2380-5
      [36]
      J.W. Quinn, J.G. Captain, K. Weis, E. Santiago-Maldonado, and S. Trigwell, Evaluation of tribocharged electrostatic beneficiation of lunar simulant in lunar gravity, J. Aerosp. Eng., 26(2013), No. 1, p. 37. doi: 10.1061/(ASCE)AS.1943-5525.0000227
      [37]
      S.Y. Zhang, R.F. Wimmer-Schweingruber, J. Yu, et al., First measurements of the radiation dose on the lunar surface, Sci. Adv., 6(2020), No. 39, art. No. eaaz1334. doi: 10.1126/sciadv.aaz1334
      [38]
      Y.Q. Li, J.Z. Liu, Z.Y. Ouyang, Y.C. Zheng, and C.L. Li, Lunar magnetism and its evolution, Prog. Geophys., 20(2005), No. 4, p. 1003.
      [39]
      Z. Michael, NASA’s cosmic dust program: collecting dust since 1981, Elements, 12(2016), No. 3, p. 159. doi: 10.2113/gselements.12.3.159
      [40]
      M. Horányi, J.R. Szalay, S. Kempf, et al., A permanent, asymmetric dust cloud around the Moon, Nature, 522(2015), p. 324. doi: 10.1038/nature14479
      [41]
      R.M. Bagdigian, D. Cloud, and J. Bedard, Status of the regenerative ECLSS water recovery and oxygen generation systems, SAE Technical Paper, (2006), art. No. 2006-01-2057.
      [42]
      T.H. Bradley, B.A. Moffitt, D.N. Mavris, and D.E. Parekh, Development and experimental characterization of a fuel cell powered aircraft, J. Power Sources, 171(2007), No. 2, p. 793. doi: 10.1016/j.jpowsour.2007.06.215
      [43]
      C.H. Lee and J.T. Yang, Modeling of the Ballard-Mark-V proton exchange membrane fuel cell with power converters for applications in autonomous underwater vehicles, J. Power Sources, 196(2011), No. 8, p. 3810. doi: 10.1016/j.jpowsour.2010.12.049
      [44]
      B. Misch, A. Firus, and G. Brunner, An alternative method of oxidizing aqueous waste in supercritical water: Oxygen supply by means of electrolysis, J. Supercrit. Fluids, 17(2000), No. 3, p. 227. doi: 10.1016/S0896-8446(99)00057-1
      [45]
      N.M. Samsonov, E.A. Kurmazenko, L.I. Gavrilov, et al., Operation results onboard the international space station and development tendency of atmosphere revitalization and monitoring system, SAE Technical Paper, (2004), art. No. 2024-01-2494.
      [46]
      F. Ye, J.L. Li, X.D. Wang, et al., Electrocatalytic properties of Ti/Pt–IrO2 anode for oxygen evolution in PEM water electrolysis, Int. J. Hydrogen Energy, 35(2010), No. 15, p. 8049. doi: 10.1016/j.ijhydene.2010.01.094
      [47]
      L. Bi, S. Boulfrad, and E. Traversa, Steam electrolysis by solid oxide electrolysis cells (SOECs) with proton-conducting oxides, Chem. Soc. Rev., 43(2014), No. 24, p. 8255. doi: 10.1039/C4CS00194J
      [48]
      E. Ethridge and W. Kaukler, Microwave Extraction of Water from Lunar Regolith Simulant, [in] AIP Conference Proceedings, Albuquerque, 2007, p. 830.
      [49]
      L. Schlüter, A. Cowley, Y. Pennec, and M. Roux, Gas purification for oxygen extraction from lunar regolith, Acta Astronaut., 179(2021), p. 371. doi: 10.1016/j.actaastro.2020.11.014
      [50]
      R.J. Williams, D.S. McKay, D. Giles, and T.E. Bunch, Mining and beneficiation of lunar ores, [in] G.K. O’Neill, J. Billingham, and W. Gilbreath, and B. O’Leary, and B. Gossett, eds., Space Resources and Space Settlements, National Aeronautics and Space Administration, Washington, 1979, p. 275.
      [51]
      D. McKay and C. Allen, Hydrogen reduction of lunar materials for oxygen extraction on the Moon, [in] Proceedings of 34th Aerospace Sciences Meeting and Exhibit, Reno, 1996, p. 488.
      [52]
      E.E. Rice, P.A. Hermes, O.A. Musbah, E. Rice, P. Hermes, and O. Musbah, Carbon-based reduction of lunar oxides for oxygen production, [in] Proceedings of 35th Aerospace Sciences Meeting and Exhibit, Reno, 1997, p. 890.
      [53]
      C.C. Allen, R.V. Morris, and D.S. McKay, Experimental reduction of lunar mare soil and volcanic glass, J. Geophys. Res.: Planets, 99(1994), No. E11, p. 23173. doi: 10.1029/94JE02321
      [54]
      M.A. Gibson, C.W. Knudsen, D.J. Brueneman, C.C. Allen, H. Kanamori, and D.S. McKay, Reduction of lunar basalt 70035: Oxygen yield and reaction product analysis, J. Geophys. Res.: Planets, 99(1994), No. E5, p. 10887. doi: 10.1029/94JE00787
      [55]
      C.C. Allen, R.V. Morris, and D.S. McKay, Oxygen extraction from lunar soils and pyroclastic glass, J. Geophys. Res.: Planets, 101(1996), No. E11, p. 26085. doi: 10.1029/96JE02726
      [56]
      H. Yoshida, T. Watanabe, H. Kanamori, T. Yoshida, S. Ogiwara, and K. Eguchi, Experimental study on water production by hydrogen reduction of lunar soil simulant in a fixed bed reactor, [in] Proceedings of Space Resources Roundtable II, Golden, 2000, p. 75.
      [57]
      Y.H. Lu, D. Mantha, and R.G. Reddy, Thermodynamic analysis on lunar soil reduced by hydrogen, Metall. Mater. Trans. B, 41(2010), No. 6, p. 1321. doi: 10.1007/s11663-010-9411-3
      [58]
      J. Tang, M.S. Chu, F. Li, C. Feng, Z.G. Liu, and Y.S. Zhou, Development and progress on hydrogen metallurgy, Int. J. Miner. Metall. Mater., 27(2020), No. 6, p. 713. doi: 10.1007/s12613-020-2021-4
      [59]
      G.B. Sanders and W.E. Larson, Progress made in lunar in situ resource utilization under NASA’s exploration technology and development program, J. Aerosp. Eng., 26(2013), No. 1, p. 5. doi: 10.1061/(ASCE)AS.1943-5525.0000208
      [60]
      L.A. Taylor and W.D. Carrier, Oxygen production on the moon: An overview and evaluation, [in] J.S. Lewis, M.S. Matthews, and M.L. Guerrieri, eds., Resources of Near-Earth Space, The University of Arizona Press, 1993, p. 69.
      [61]
      L.A. Taylor, Hydrogen, helium, and other solar⁃wind components in lunar soil: Abundances and predictions, [in] Proceedings of Space 90 : the Second International Conference, 1990, Albuquerque, p. 68.
      [62]
      L.A. Taylor, Resource for a lunar base: Rocks, minerals, and soil of the Moon, [in] Proceedings of the Second Conference on Lunar Bases and Space Activities of the 21st Century, Houston, 1992, p. 361.
      [63]
      L. Wang, P.M. Guo, L.B. Kong, and P. Zhao, Industrial application prospects and key issues of the pure-hydrogen reduction process, Int. J. Miner. Metall. Mater., 29(2022), No. 10, p. 1922. doi: 10.1007/s12613-022-2478-4
      [64]
      A.H. Cutler and P. Krag, A carbothermal scheme for lunar oxygen production, [in] W.W. Mendell, ed. Lunar Bases and Space Activities of the 21st Century, Lunar and Planetary Institute, Houston, 1985, p. 559.
      [65]
      S. Sen, C.S. Ray, and R.G. Reddy, Processing of lunar soil simulant for space exploration applications, Mater. Sci. Eng. A, 413-414(2005), p. 592. doi: 10.1016/j.msea.2005.08.172
      [66]
      M. Samouhos, P. Tsakiridis, M. Iskander, M. Taxiarchou, and K. Betsis, In-situ resource utilization: Ferrosilicon and SiC production from BP-1 lunar regolith simulant via carbothermal reduction, Planet. Space Sci., 212(2022), art. No. 105414. doi: 10.1016/j.pss.2021.105414
      [67]
      D.S. Mckay, R.V. Morris, and A.J. Jurewicz, Experimental reduction of simulated lunar glass by carbon and hydrogen and implications for lunar base oxygen production, [in] Proceedings of the 22nd Lunar and Planetary Science Conference, Houston, 1991, p. 49.
      [68]
      L. Schlüter and A. Cowley, Review of techniques for in-situ oxygen extraction on the moon, Planet. Space Sci., 181(2020), art. No. 104753. doi: 10.1016/j.pss.2019.104753
      [69]
      D.B. Rao, U.V. Choudary, T.E. Erstfeld, R.J.Williams, and Y.A. Chang, Extraction processes for the production of aluminum, titanium, iron, magnesium, and oxygen and nonterrestrial sources, [in] Proceedings of the Space Resources and Space Settlements, Pasadena, 1979, p. 257.
      [70]
      Y. Zhao and F. Shadman, Kinetics and mechanism of ilmenite reduction with carbon monoxide, AlChE. J., 36(1990), No. 9, p. 1433. doi: 10.1002/aic.690360917
      [71]
      Y.H. Lu and R.G. Reddy, Extraction of metals and oxygen from lunar soil, High Temp. Mater. Processes (London), 27(2008), No. 4, p. 223. doi: 10.1515/HTMP.2008.27.4.223
      [72]
      J. Prinetto, A. Colagrossi, A. Dottori, Ivan Troisi, and Michèle Roberta Lavagna, Terrestrial demonstrator for a low-temperature carbothermal reduction process on lunar regolith simulant: Design and AIV activities, Planet. Space Sci., 225(2023), art. No. 105618. doi: 10.1016/j.pss.2022.105618
      [73]
      R. Gustafson, B. White, M. Fidler, and A. Muscatello, Demonstrating the solar carbothermal reduction of lunar regolith to produce oxygen, [in] 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, 2010, p. 1163.
      [74]
      M. Halmann, A. Frei, and A. Steinfeld, Vacuum carbothermic reduction of Al2O3, BeO, MgO–CaO, TiO2, ZrO2, HfO2+ZrO2, SiO2, SiO2+Fe2O3, and GeO2 to the metals: A thermodynamic study, Miner. Process. Extr. Metall. Rev., 32(2011), No. 4, p. 247. doi: 10.1080/08827508.2010.530723
      [75]
      H.C. Lee, S. Dhage, M.S. Akhtar, et al., A simulation study on the direct carbothermal reduction of SiO2 for Si metal, Curr. Appl. Phys., 10(2010), No. 2, p. S218. doi: 10.1016/j.cap.2009.11.053
      [76]
      H.N. Friedlander, An analysis of alternate hydrogen sources for lunar manufacture, [in] Proceedings of the Lunar Bases and Space Activities of the 21st Century, Washington, 1984, p. 611.
      [77]
      R. Balasubramaniam, S. Gokoglu, and U. Hegde, The reduction of lunar regolith by carbothermal processing using methane, Int. J. Miner. Process., 96(2010), No. 1-4, p. 54. doi: 10.1016/j.minpro.2010.06.001
      [78]
      R.J. Gustafson, E.E. Rice, and B.C. White, Carbon reduction of lunar regolith for oxygen production, [in] AIP Conference Proceedings, Albuquerque, 2005, p.1224.
      [79]
      T.A. Sullivan, A modified sulfate process to lunar oxygen, [in] Proceedings of the Engineering , Construction , and Operations in Space - III : Space '92; Proceedings of the 3rd International Conference, Denver, 1992, p. 641.
      [80]
      W.M. Haynes, D.R. Lide, and T.J. Bruno, CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, 2016.
      [81]
      D.M. Burt, Lunar production of oxygen and metals using fluorine: Conceptsinvolving fluorite, lithium, and acid-base theory, [in] Abstracts of the Lunar and Planetary Science Conference, Houston, 1988, p. 150.
      [82]
      D.M. Burt, Lunar mining of oxygen using fluorine, [in] Proceedings of the Second Conference on Lunar Bases and Space Activities of the 21st Century, Houston, 1992, p. 423.
      [83]
      G.A. Landis, Materials refining on the Moon, Acta Astronaut., 60(2007), No. 10-11, p. 906. doi: 10.1016/j.actaastro.2006.11.004
      [84]
      W. Seboldt, S. Lingner, S. Hoernes, and W. Grimmeisen, Oxygen extraction from lunar soil by fluorination, [in] Abstracts of Resources of Near-Earth Space, 1991, p. 11.
      [85]
      C.L. Senior, Lunar oxygen production by pyrolysis of regolith, [in] Proceedings of the Tenth Princeton /AIAA/SSI Conference, Princeton, 1991, p. 331.
      [86]
      M.G. Shaw, G.A. Brooks, M.A. Rhamdhani, A.R. Duffy, and M.I. Pownceby, Thermodynamic modelling of ultra-high vacuum thermal decomposition for lunar resource processing, Planet. Space Sci., 204(2021), art. No. 105272. doi: 10.1016/j.pss.2021.105272
      [87]
      M. Shaw, M. Humbert, G. Brooks, A. Rhamdhani, A. Duffy, and M. Pownceby, Mineral processing and metal extraction on the lunar surface – Challenges and opportunities, Miner. Process. Extr. Metall. Rev., 43(2022), No. 7, p. 865. doi: 10.1080/08827508.2021.1969390
      [88]
      Z.N. Shi, A.M. Liu, J.Z. Guan, K.Y. Xie, and C.Y. Li, Metals extraction and oxygen preparation processes for lunar regolith in-situ resources utilization, J. Mater. Metall., 21(2022), No. 2, p. 79.
      [89]
      P.H. Allen, K.A. Prisbrey, and B. Detering, Plasma processing of lunar ilmenite to produce oxygen, [in] Proceedings of the Engineering , Construction , and Operations in Space, Denver, 1988, p. 411.
      [90]
      P. Li, S.J. Wang, X.Y. Li, H. Tang, and F. Chen, Review of oxygen production using oxygenous minerals on the Moon, Bull. Mineral. Petrol. Geochem., 28(2009), No. 2, p. 183.
      [91]
      D.J. Fray, Anodic and cathodic reactions in molten calcium chloride, Can. Metall. Q., 41(2002), No. 4, p. 433. doi: 10.1179/cmq.2002.41.4.433
      [92]
      G.Z. Chen, D.J. Fray, and T.W. Farthing, Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride, Nature, 407(2000), p. 361. doi: 10.1038/35030069
      [93]
      K. Ono and R.O. Suzuki, A new concept for producing Ti sponge: Calciothermic reduction, JOM, 54(2002), No. 2, p. 59. doi: 10.1007/BF02701078
      [94]
      G.Z. Chen, Interactions of molten salts with cathode products in the FFC Cambridge process, Int. J. Miner. Metall. Mater., 27(2020), No. 12, p. 1572. doi: 10.1007/s12613-020-2202-1
      [95]
      B.A. Lomax, M. Conti, N. Khan, N.S. Bennett, A.Y. Ganin, and M.D. Symes, Proving the viability of an electrochemical process for the simultaneous extraction of oxygen and production of metal alloys from lunar regolith, Planet. Space Sci., 180(2020), art. No. 104748. doi: 10.1016/j.pss.2019.104748
      [96]
      C. Schwandt, J.A. Hamilton, D.J. Fray, and I.A. Crawford, The production of oxygen and metal from lunar regolith, Planet. Space Sci., 74(2012), No. 1, p. 49. doi: 10.1016/j.pss.2012.06.011
      [97]
      K. Ono, Fundamental aspects of calciothermic process to produce titanium, Mater. Trans., 45(2004), No. 5, p. 1660. doi: 10.2320/matertrans.45.1660
      [98]
      H. Kvande and W. Haupin, Inert anodes for AI smelters: Energy balances and environmental impact, JOM, 53(2001), No. 5, p. 29. doi: 10.1007/s11837-001-0205-6
      [99]
      K. Grjotheim, M. Malinovsky, and K. Matiasovsky, The effect of different additives on the conductivity of cryolite-alumina melts, JOM, 21(1969), No. 1, p. 28. doi: 10.1007/BF03378771
      [100]
      X.L. Xi, M. Feng, L.W. Zhang, and Z.R. Nie, Applications of molten salt and progress of molten salt electrolysis in secondary metal resource recovery, Int. J. Miner. Metall. Mater., 27(2020), No. 12, p. 1599. doi: 10.1007/s12613-020-2175-0
      [101]
      K.T. Kilby, S.Q. Jiao, and D.J. Fray, Current efficiency studies for graphite and SnO2-based anodes for the electro-deoxidation of metal oxides, Electrochim. Acta, 55(2010), No. 23, p. 7126. doi: 10.1016/j.electacta.2010.06.049
      [102]
      R. Barnett, K.T. Kilby, and D.J. Fray, Reduction of tantalum pentoxide using graphite and tin-oxide-based anodes via the FFC-Cambridge process, Metall. Mater. Trans. B, 40(2009), No. 2, p. 150. doi: 10.1007/s11663-008-9219-6
      [103]
      S.Q. Jiao, K.N P. Kumar, K.T. Kilby, and D.J. Fray, Preparation and electrical properties of xCaRuO3/(1−x)CaTiO3 perovskite composites, Mater. Res. Bull., 44(2009), No. 8, p. 1738. doi: 10.1016/j.materresbull.2009.03.019
      [104]
      S.Q. Jiao and D.J. Fray, Development of an inert anode for electrowinning in calcium chloride–calcium oxide melts, Metall. Mater. Trans. B, 41(2010), No. 1, p. 74. doi: 10.1007/s11663-009-9281-8
      [105]
      L.W. Hu, Y. Song, J.B. Ge, S.Q. Jiao, and J. Cheng, Electrochemical metallurgy in CaCl2–CaO melts on the basis of TiO2·RuO2 inert anode, J. Electrochem. Soc., 163(2016), No. 3, p. E33. doi: 10.1149/2.0131603jes
      [106]
      S.Q. Jiao, H.D. Jiao, W.L. Song, M.Y. Wang, and J.G. Tu, A review on liquid metals as cathodes for molten salt/oxide electrolysis, Int. J. Miner. Metall. Mater., 27(2020), No. 12, p. 1588. doi: 10.1007/s12613-020-1971-x
      [107]
      K.W. Semkow and A.F. Sammells, The indirect electrochemical refining of lunar ores, J. Electrochem. Soc., 134(1987), No. 8, p. 2088. doi: 10.1149/1.2100829
      [108]
      Z.N. Shi, K.Y. Xie, P.P. Guan, et al., Aluminothermic reduction of lunar soil simulant ilmenite in cryolite molten salt media, Rare. Metal. Mat. Eng., 45(2016), No. 5, p. 1278.
      [109]
      K.Y. Xie, Z.N. Shi, J.L. Xu, X.W. Hu, B.L. Gao, and Z.W. Wang, Aluminothermic reduction-molten salt electrolysis using inert anode for oxygen and Al-base alloy extraction from lunar soil simulant, JOM, 69(2017), No. 10, p. 1963. doi: 10.1007/s11837-017-2478-4
      [110]
      A.M. Liu, L.X. Li, J.L. Xu, et al., Preparation of Al–Si master alloy by electrochemical reduction of fly ash in molten salt, JOM, 66(2014), No. 5, p. 694. doi: 10.1007/s11837-014-0947-6
      [111]
      A.M. Liu, Z.N. Shi, X.W. Hu, et al., Production of metals and oxygen from coal fly ash by aluminothothermic and electrochemical reduction process, J. Alloys Compd., 718(2017), p. 279. doi: 10.1016/j.jallcom.2017.05.110
      [112]
      A.M. Liu, Z.N. Shi, X.W. Hu, B.L. Gao, and Z.W. Wang, Lunar soil simulant electrolysis using inert anode for Al–Si alloy and oxygen production, J. Electrochem. Soc., 164(2017), No. 2, p. H126. doi: 10.1149/2.1381702jes
      [113]
      L.A. Haskin, R.O. Colson, D.J. Lindstrom, R.H. Lewis, and K.W. Semkow, Electrolytic smelting of lunar rock for oxygen, iron, and silicon, [in] Proceedings of the Second Conference on Lunar Bases and Space Activities of the 21st Century, Houston, 1992, p. 411.
      [114]
      M.Y. Wang, H.D. Jiao, Z.H. Pu, et al., Ultra-high temperature molten oxide electrochemistry, Angew. Chem. Int. Ed., 61(2022), No. 32, art. No. e202206482. doi: 10.1002/anie.202206482
      [115]
      A.H. Sirk, D.R. Sadoway, and L. Sibille, Direct electrolysis of molten lunar regolith for the production of oxygen and metals on the moon, ECS Trans., 28(2010), No. 6, p. 367. doi: 10.1149/1.3367929
      [116]
      L. Sibille, D. Sadoway, A. Sirk, et al., Recent advances in scale-up development of molten regolith electrolysis for oxygen production in support of a lunar base, [in] Proceedings of the 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Orlando, 2009, 659.
      [117]
      S. Schreiner, L. Sibille, J. Dominguez, A. Sirk, J. Hoffman, and G. Sanders, Development of a molten regolith electrolysis reactor model for lunar in-situ resource utilization, [in] Proceedings of the 8th Symposium on Space Resource Utilization, Kissimmee, 2015: 1180.
      [118]
      D. Khetpal, A.C. Ducret, and D.R. Sadoway, From oxygen generation to metals production: In situ resource utilization by molten oxide electrolysis, [in] Proceedings of the 2002 Microgravity Materials Science Conference, Houston, 2003, p. 548.
      [119]
      H. Kim, J.D. Paramore, A. Allanore, and D.R. Sadoway, Stability of iridium anode in molten oxide electrolysis for ironmaking: Influence of slag basicity, ECS Trans., 33(2010), No. 7, p. 219. doi: 10.1149/1.3484779
      [120]
      D.H. Wang, A.J. Gmitter, and D.R. Sadoway, Production of oxygen gas and liquid metal by electrochemical decomposition of molten iron oxide, J. Electrochem. Soc., 158(2011), No. 6, art. No. E51. doi: 10.1149/1.3560477
      [121]
      H. Kim, J. Paramore, A. Allanore, and D.R. Sadoway, Electrolysis of molten iron oxide with an iridium anode: The role of electrolyte basicity, J. Electrochem. Soc., 158(2011), No. 10, art. No. E101. doi: 10.1149/1.3623446
      [122]
      A. Allanore, L. Yin, and D.R. Sadoway, A new anode material for oxygen evolution in molten oxide electrolysis, Nature, 497(2013), No. 7449, p. 353. doi: 10.1038/nature12134

    Catalog


    • /

      返回文章
      返回