Cite this article as:

Youpeng Xu, Sheng Pang, Liangwei Cong, Guoyu Qian, Dong Wang, Laishi Li, Yusheng Wu, and Zhi Wang, Overview of in-situ oxygen production technologies for lunar resources, Int. J. Miner. Metall. Mater., 32(2025), No. 2, pp.233-255. https://dx.doi.org/10.1007/s12613-024-2925-5
Youpeng Xu, Sheng Pang, Liangwei Cong, Guoyu Qian, Dong Wang, Laishi Li, Yusheng Wu, and Zhi Wang, Overview of in-situ oxygen production technologies for lunar resources, Int. J. Miner. Metall. Mater., 32(2025), No. 2, pp.233-255. https://dx.doi.org/10.1007/s12613-024-2925-5
引用本文 PDF XML SpringerLink

月球资源原位制氧技术综述

摘要: 月球以其丰富的资源和独特的环境特征,成为人类开发地外资源、探索深空的理想中转站和试验场。氧气,作为人类开展月面活动的重要生保物资,同时也是潜在的月面燃料推进剂,其规模化供应是开发月球的重要基础。基于月壤为多金属氧化物以及月壤中含有水冰的特点,以月壤为原料,在月面开展原位制氧是未来人类常驻月球的关键。本文详细综述了地面先进制氧技术,深入探讨了水冰电解法、金属氧化物两步制氧法及金属氧化物一步制氧法的原理、工艺、装置及优缺点。两步制氧法包括氢还原、碳热还原和湿法冶金,一步制氧法涵盖了氟化/氯化、高温分解、熔盐电解及熔融电解。最终,基于对月球资源及特殊环境的综合分析,通过原材料、设备、技术及经济可行性四个维度进行比较,对各种制氧技术月面可操作性进行了排序,氧化物熔融电解技术被认为是月面原位制氧最具前景的方法。鉴于熔融月壤的高温腐蚀特性以及月球的低重力环境,开发廉价且稳定的惰性阳极以及便于收集氧气的电解装置,对于在月球上推广氧化物熔融电解制氧技术至关重要。本综述有望为月球原位制氧技术提供重要参考,并为即将到来的月球探索计划提供技术支撑。

 

Overview of in-situ oxygen production technologies for lunar resources

Abstract: The rich resources and unique environment of the Moon make it an ideal location for human expansion and the utilization of extraterrestrial resources. Oxygen, crucial for supporting human life on the Moon, can be extracted from lunar regolith, which is highly rich in oxygen and contains polymetallic oxides. This oxygen and metal extraction can be achieved using existing metallurgical techniques. Furthermore, the ample reserves of water ice on the Moon offer another means for oxygen production. This paper offers a detailed overview of the leading technologies for achieving oxygen production on the Moon, drawing from an analysis of lunar resources and environmental conditions. It delves into the principles, processes, advantages, and drawbacks of water-ice electrolysis, two-step oxygen production from lunar regolith, and one-step oxygen production from lunar regolith. The two-step methods involve hydrogen reduction, carbothermal reduction, and hydrometallurgy, while the one-step methods encompass fluorination/chlorination, high-temperature decomposition, molten salt electrolysis, and molten regolith electrolysis (MOE). Following a thorough comparison of raw materials, equipment, technology, and economic viability, MOE is identified as the most promising approach for future in-situ oxygen production on the Moon. Considering the corrosion characteristics of molten lunar regolith at high temperatures, along with the Moon’s low-gravity environment, the development of inexpensive and stable inert anodes and electrolysis devices that can easily collect oxygen is critical for promoting MOE technology on the Moon. This review significantly contributes to our understanding of in-situ oxygen production technologies on the Moon and supports upcoming lunar exploration initiatives.

 

/

返回文章
返回