Cite this article as: |
Zhonghua Lu, Jun Shen, Xin Zhang, Lingcong Chao, Liang Chen, Ding Zhang, Tao Wei, and Shoudong Xu, From waste to wealth: Coal tar residue derived carbon materials as low-cost anodes for potassium-ion batteries, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2930-8 |
申峻 E-mail: xushoudong@tyut.edu.cn
魏涛 E-mail: shenjun@tyut.edu.cn
徐守冬 E-mail: wt863@126.com
Supplementary Information-s12613-024-2930-8.docx | |
Supplementary Information-s12613-024-2930-8.docx |
[1] |
A. Soni, P.K. Das, A.W. Hashmi, M. Yusuf, H. Kamyab, and S. Chelliapan, Challenges and opportunities of utilizing municipal solid waste as alternative building materials for sustainable development goals: A review, Sustain. Chem. Pharm., 27(2022), art. No. 100706. doi: 10.1016/j.scp.2022.100706
|
[2] |
X.X. Peng, Y.S. Jiang, Z.H. Chen, et al., Recycling municipal, agricultural and industrial waste into energy, fertilizers, food and construction materials, and economic feasibility: A review, Environ. Chem. Lett., 21(2023), No. 2, p. 765. doi: 10.1007/s10311-022-01551-5
|
[3] |
J.C. Altamirano, S.S. Yin, L. Belova, G. Poma, and A. Covaci, Exploring the hidden chemical landscape: Non-target and suspect screening analysis for investigating solid waste-associated environments, Environ. Res., 245(2024), art. No. 118006. doi: 10.1016/j.envres.2023.118006
|
[4] |
B.B. Qiu, C.H. Yang, Q.N. Shao, Y. Liu, and H.Q. Chu, Recent advances on industrial solid waste catalysts for improving the quality of bio-oil from biomass catalytic cracking: A review, Fuel, 315(2022), art. No. 123218. doi: 10.1016/j.fuel.2022.123218
|
[5] |
Z.H. Lu, S. Guo, J. Shen, et al., Evolution of structure and pyrolysis characteristics of coal tar residue after extraction, J. Energy Inst., 111(2023), art. No. 101421. doi: 10.1016/j.joei.2023.101421
|
[6] |
X.L. Wang, J. Shen, Y.X. Niu, Q.T. Sheng, G. Liu, and Y.G. Wang, Solvent extracting coal gasification tar residue and the extracts characterization, J. Cleaner Prod., 133(2016), p. 965. doi: 10.1016/j.jclepro.2016.06.060
|
[7] |
F.Y. Gao, C.C. Zhou, Z.H. Wang, W.W. Zhu, X. Wang, and G.J. Liu, Solid-oil separation of coal tar residue to reduce polycyclic aromatic hydrocarbons via microwave-assisted extraction, J. Environ. Manage., 337(2023), art. No. 117679. doi: 10.1016/j.jenvman.2023.117679
|
[8] |
Y.X. Niu, X.L. Wang, J. Shen, et al., Separation of coal gasification tar residue by solvent extracting, Sep. Purif. Technol., 188(2017), p. 98. doi: 10.1016/j.seppur.2017.07.002
|
[9] |
X.L. Wang, J. Shen, Y.X. Niu, Y.G. Wang, G. Liu, and Q.T. Sheng, Removal of phenol by powdered activated carbon prepared from coal gasification tar residue, Environ. Technol., 39(2018), No. 6, p. 694. doi: 10.1080/09593330.2017.1310304
|
[10] |
L. Gao, F.Q. Dong, Q.W. Dai, G.Q. Zhong, U. Halik, and D.J. Lee, Coal tar residues based activated carbon: Preparation and characterization, J. Taiwan Inst. Chem. Eng., 63(2016), p. 166. doi: 10.1016/j.jtice.2016.02.029
|
[11] |
Y.H. Wang, P. He, X.M. Zhao, W. Lei, and F.Q. Dong, Coal tar residues-based nanostructured activated carbon/Fe3O4 composite electrode materials for supercapacitors, J. Solid State Electrochem., 18(2014), No. 3, p. 665. doi: 10.1007/s10008-013-2303-0
|
[12] |
S. Li, J.L. Qin, T.J. Gao, et al., Fabrication of Fe3C nanoparticles embedded in N-doped carbon nanotubes/porous carbon 3D materials derived from distilled grains for high performance of potassium ion battery, J. Alloys Compd., 912(2022), art. No. 165130. doi: 10.1016/j.jallcom.2022.165130
|
[13] |
J. Xu, S.M. Dou, W. Zhou, et al., Scalable waste-plastic-derived carbon nanosheets with high contents of inbuilt nitrogen/sulfur sites for high performance potassium-ion hybrid capacitors, Nano Energy, 95(2022), art. No. 107015. doi: 10.1016/j.nanoen.2022.107015
|
[14] |
X.X. Zhang, F. Wu, X.W. Lv, et al., Achieving sustainable and stable potassium-ion batteries by leaf-bioinspired nanofluidic flow, Adv. Mater., 34(2022), No. 39, art. No. 2204370. doi: 10.1002/adma.202204370
|
[15] |
J.R. Wu, T. Yang, Y. Song, Z.H. Ma, X.D. Tian, and Z.J. Liu, Preparation of disordered carbon for alkali metal-ion (lithium, sodium, and potassium) batteries by pitch molecular modification: A review, Carbon, 221(2024), art. No. 118902. doi: 10.1016/j.carbon.2024.118902
|
[16] |
D.Y. Wang, Q. Wang, M.X. Tan, et al., Biomass CQDs derivate carbon as high-performance anode for K-ion battery, J. Alloys Compd., 922(2022), art. No. 166260. doi: 10.1016/j.jallcom.2022.166260
|
[17] |
J.M. Cao, K.Y. Zhang, J.L. Yang, Z.Y. Gu, and X.L. Wu, Differential bonding behaviors of sodium/potassium-ion storage in sawdust waste carbon derivatives, Chin. Chem. Lett., 35(2024), No. 4, art. No. 109304. doi: 10.1016/j.cclet.2023.109304
|
[18] |
X. Li, Y. Zhou, B. Deng, J. Li, and Z. Xiao, Research progress of biomass carbon materials as anode materials for potassium-ion batteries, Front. Chem., 11(2023), art. No. 1162909. doi: 10.3389/fchem.2023.1162909
|
[19] |
Y. Ma, W.H. Liu, W.H. Liu, et al., Coconut-solid-waste-derived hard-carbon anode materials for fast potassium ion storage, Coatings, 14(2024), No. 2, art. No. 208. doi: 10.3390/coatings14020208
|
[20] |
J.G. Zheng, F.Y. Xiao, H.J. Jin, et al., Facile fabrication of MoS2 nanocrystals confined in waste leather derived N, P co-doped carbon fiber for long-lifespan of sodium/potassium ion batteries, J. Phys. Chem. Solids, 172(2023), art. No. 111080. doi: 10.1016/j.jpcs.2022.111080
|
[21] |
Q. Zhao, Q.T. Zheng, S.H. Li, et al., Nitrogen/oxygen/sulfur tri-doped hard carbon nanospheres derived from waste tires with high sodium and potassium anodic performances, Inorg. Chem. Front., 10(2023), No. 9, p. 2574. doi: 10.1039/D2QI02378D
|
[22] |
X. He, L. Zhong, X. Qiu, et al., Sustainable polyvinyl chloride-derived soft carbon anodes for potassium-ion storage: Electrochemical behaviors and mechanism, ChemSusChem, 16(2023), No. 19, art. No. e202300646. doi: 10.1002/cssc.202300646
|
[23] |
Z.H. Kang, K.X. Sun, C.F. Sun, and Q. Liu, A plastics-derived organic anode material for practical and sustainable potassium-ion batteries, Int. J. Electrochem. Sci., 18(2023), No. 9, art. No. 100222. doi: 10.1016/j.ijoes.2023.100222
|
[24] |
X.Y. Liu, H.C. Tao, C.Y. Tang, and X.L. Yang, Anthracite-derived carbon as superior anode for lithium/potassium-ion batteries, Chem. Eng. Sci., 248(2022), art. No. 117200. doi: 10.1016/j.ces.2021.117200
|
[25] |
H. Wang, F. Sun, J.H. Dong, et al., Mechanochemistry transforming high-surface-area coal-based activated carbon into densified carbon with optimized multi-scale structures for enhanced sodium/potassium ion storage, Electrochim. Acta, 475(2024), art. No. 143579. doi: 10.1016/j.electacta.2023.143579
|
[26] |
W. Wei, F. Wang, J. Yang, J. Zou, J. Li, and K. Shi, A superior potassium-ion anode material from pitch-based activated carbon fibers with hierarchical pore structure prepared by metal catalytic activation, ACS Appl. Mater. Interfaces, 13(2021), No. 5, p. 6557. doi: 10.1021/acsami.0c22184
|
[27] |
Y. Jiang, N. Xiao, X.D. Song, et al., Coal tar pitch derived sp2 configuration-dominated vacancy-rich carbon with expand interlayer spacing for low-voltage, durable, and fast potassium storage, Adv. Funct. Mater., 34(2024), No. 26, art. No. 2316207. doi: 10.1002/adfm.202316207
|
[28] |
Y. Jiang, J.M. Jiang, C. Geng, et al., Rational regulation of defect-rich hierarchical porous carbon nanosheets as sustainable anode materials for potassium-ion storage, J. Energy Storage, 75(2024), art. No. 109544. doi: 10.1016/j.est.2023.109544
|
[29] |
X. Li, Q. Chu, D.Y. Zhao, et al., Improved electrochemical performance of soft carbon derived from coal liquefaction residue coated with expanded graphite for lithium/potassium batteries, Chem. Eng. Sci., 281(2023), art. No. 119108. doi: 10.1016/j.ces.2023.119108
|
[30] |
H. Ullah, Q. Abbas, M.U. Ali, et al., Synergistic effects of low-/medium-vacuum carbonization on physico-chemical properties and stability characteristics of biochars, Chem. Eng. J., 373(2019), p. 44. doi: 10.1016/j.cej.2019.05.025
|
[31] |
Y.G. Wang, X.Y. Wei, S.K. Wang, et al., Structural evaluation of Xiaolongtan lignite by direct characterization and pyrolytic analysis, Fuel Process. Technol., 144(2016), p. 248. doi: 10.1016/j.fuproc.2015.12.034
|
[32] |
Q.X. Yao, X.X. Kong, X.M. Dai, et al., 1H NMR and 13C NMR characterization of n-heptane extraction of low-temperature coal tar reacted with formaldehyde, Energy Sources Part A, 42(2020), No. 12, p. 1490. doi: 10.1080/15567036.2019.1604863
|
[33] |
J.C. Yan, Z.P. Lei, Z.K. Li, et al., Molecular structure characterization of low-medium rank coals via XRD, solid state 13C NMR and FTIR spectroscopy, Fuel, 268(2020), art. No. 117038. doi: 10.1016/j.fuel.2020.117038
|
[34] |
Z.H. Lu, S. Guo, J. Shen, et al., Effect of solvent extraction on the composition of coal tar residues and their pyrolysis characteristics, Energy Sources Part A, 44(2022), No. 4, p. 9204. doi: 10.1080/15567036.2022.2129881
|
[35] |
G.L. Zhang, T.T. Guan, M. Cheng, et al., Harvesting honeycomb-like carbon nanosheets with tunable mesopores from mild-modified coal tar pitch for high-performance flexible all-solid-state supercapacitors, J. Power Sources, 448(2020), art. No. 227446. doi: 10.1016/j.jpowsour.2019.227446
|
[36] |
N. Sun, R. Zhao, M.Y. Xu, S.H. Zhang, R.A. Soomro, and B. Xu, Design advanced nitrogen/oxygen co-doped hard carbon microspheres from phenolic resin with boosted Na-storage performance, J. Power Sources, 564(2023), art. No. 232879. doi: 10.1016/j.jpowsour.2023.232879
|
[37] |
Q. Sun, D.P. Li, J. Cheng, et al., Nitrogen-doped carbon derived from pre-oxidized pitch for surface dominated potassium-ion storage, Carbon, 155(2019), p. 601. doi: 10.1016/j.carbon.2019.08.059
|
[38] |
Z.R. Wu, J. Zou, S. Shabanian, K. Golovin, and J. Liu, The roles of electrolyte chemistry in hard carbon anode for potassium-ion batteries, Chem. Eng. J., 427(2022), art. No. 130972. doi: 10.1016/j.cej.2021.130972
|
[39] |
C.G. Wang and F.G. Zeng, Molecular structure characterization of CS2–NMP extract and residue for Malan bituminous coal via solid-state 13C NMR, FTIR, XPS, XRD, and CAMD techniques, Energy Fuels, 34(2020), No. 10, p. 12142. doi: 10.1021/acs.energyfuels.0c01877
|
[40] |
M.H. Song, Q. Song, T. Zhang, et al., Growing curly graphene layer boosts hard carbon with superior sodium-ion storage, Nano Res., 16(2023), No. 7, p. 9299. doi: 10.1007/s12274-023-5539-8
|
[41] |
S. Alvin, D. Yoon, C. Chandra, et al., Revealing sodium ion storage mechanism in hard carbon, Carbon, 145(2019), p. 67. doi: 10.1016/j.carbon.2018.12.112
|
[42] |
J. Kister, N. Pieri, R. Alvarez, M.A. Díez, and J.J. Pis, Effects of preheating and oxidation on two bituminous coals assessed by synchronous UV fluorescence and FTIR spectroscopy, Energy Fuels, 10(1996), No. 4, p. 948. doi: 10.1021/ef950159a
|
[43] |
R. Torres-Sciancalepore, A. Fernandez, D. Asensio, et al., Kinetic and thermodynamic comparative study of quince bio-waste slow pyrolysis before and after sustainable recovery of pectin compounds, Energy Convers. Manage., 252(2022), art. No. 115076. doi: 10.1016/j.enconman.2021.115076
|
[44] |
D. Zhao, H.Q. Zhao, J.Q. Ye, et al., Oxygen functionalization boosted sodium adsorption-intercalation in coal based needle coke, Electrochim. Acta, 329(2020), art. No. 135127. doi: 10.1016/j.electacta.2019.135127
|
[45] |
R.K. Mishra, K. Mohanty, and X.H. Wang, Pyrolysis kinetic behavior and Py-GC–MS analysis of waste dahlia flowers into renewable fuel and value-added chemicals, Fuel, 260(2020), art. No. 116338. doi: 10.1016/j.fuel.2019.116338
|
[46] |
L.N. Qin, S.D. Xu, Z.H. Lu, et al., Cellulose as a novel precursor to construct high-performance hard carbon anode toward enhanced sodium-ion batteries, Diam. Relat. Mater., 136(2023), art. No. 110065. doi: 10.1016/j.diamond.2023.110065
|
[47] |
J.H. Choi, G.D. Park, D.S. Jung, and Y.C. Kang, Pitch-derived carbon coated SnO2–CoO yolk–shell microspheres with excellent long-term cycling and rate performances as anode materials for lithium-ion batteries, Chem. Eng. J., 369(2019), p. 726. doi: 10.1016/j.cej.2019.03.123
|
[48] |
Q.D. Liu, F. Han, J.F. Zhou, et al., Boosting the potassium-ion storage performance in soft carbon anodes by the synergistic effect of optimized molten salt medium and N/S dual-doping, ACS Appl. Mater. Interfaces, 12(2020), No. 18, p. 20838. doi: 10.1021/acsami.0c00679
|
[49] |
D.P. Qiu and Y.L. Hou, Carbon materials toward efficient potassium storage: Rational design, performance evaluation and potassium storage mechanism, Green Energy Environ., 8(2023), No. 1, p. 115. doi: 10.1016/j.gee.2022.05.007
|
[50] |
Y.F. Zhang, W.R. Wei, C.L. Zhu, et al., Interconnected honeycomb-like carbon with rich nitrogen/sulfur doping for stable potassium ion storage, Electrochim. Acta, 424(2022), art. No. 140596. doi: 10.1016/j.electacta.2022.140596
|
[51] |
J.L. Liu, T.T. Yin, B.B. Tian, et al., Unraveling the potassium storage mechanism in graphite foam, Adv. Energy Mater., 9(2019), No. 22, art. No. 1900579. doi: 10.1002/aenm.201900579
|
[52] |
Y. Liu, Y.X. Lu, Y.S. Xu, et al., Pitch-derived soft carbon as stable anode material for potassium ion batteries, Adv. Mater., 32(2020), No. 17, art. No. 2000505. doi: 10.1002/adma.202000505
|
[53] |
Y.X. Du, H.G. Fan, L.C. Bai, et al., Molten salt-assisted construction of hollow carbon spheres with outer-order and inner-disorder heterostructure for ultra-stable potassium ion storage, ACS Appl. Mater. Interfaces, 15(2023), No. 3, p. 4081. doi: 10.1021/acsami.2c19784
|