留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 32 Issue 2
Feb.  2025

图(9)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  153
  • HTML全文浏览量:  67
  • PDF下载量:  9
  • 被引次数: 0
Zhonghua Lu, Jun Shen, Xin Zhang, Lingcong Chao, Liang Chen, Ding Zhang, Tao Wei, and Shoudong Xu, From waste to wealth: Coal tar residue derived carbon materials as low-cost anodes for potassium-ion batteries, Int. J. Miner. Metall. Mater., 32(2025), No. 2, pp. 464-475. https://doi.org/10.1007/s12613-024-2930-8
Cite this article as:
Zhonghua Lu, Jun Shen, Xin Zhang, Lingcong Chao, Liang Chen, Ding Zhang, Tao Wei, and Shoudong Xu, From waste to wealth: Coal tar residue derived carbon materials as low-cost anodes for potassium-ion batteries, Int. J. Miner. Metall. Mater., 32(2025), No. 2, pp. 464-475. https://doi.org/10.1007/s12613-024-2930-8
引用本文 PDF XML SpringerLink
研究论文

变废为宝:煤焦油渣衍生炭材料用作低成本钾离子电池负极



  • 通讯作者:

    申峻    E-mail: xushoudong@tyut.edu.cn

    魏涛    E-mail: shenjun@tyut.edu.cn

    徐守冬    E-mail: wt863@126.com

文章亮点

  • (1)将煤化工行业固体废物煤焦油渣转变为高附加值炭材料并研究了其作为钾离子电池负极材料的电化学性能。
  • (2)综合对比了不同热解温度下煤焦油渣衍生炭材料的结构特点及电化学性能差异。
  • (3)系统地研究了CTRCs负极材料中K+存储的动力学特征及储钾机理。
  • 煤焦油渣(CTR)是煤化工行业产生的一种固体废物,CTR的富碳特征使其具有高附加值利用的潜能。本文采用直接炭化法,分别在700、800、900和1000°C下制备了CTR衍生炭材料(CTRCs),并将其作为钾离子电池(PIB)的负极材料。通过结构和形貌表征以及电化学性能测试,系统地探讨了炭化温度对CTRCs微观结构和钾离子存储性能的影响。在涡轮层状结构、晶体结构、孔隙结构、官能团和电导率等结构特征和物理性质的共同调控下,900°C制备的炭材料(CTRC-900H)在50 mA·g−1的电流密度下具有265.6 mAh·g−1的可逆比容量,且在循环100周后仍具有93.8%的容量保持率,500 mA·g−1的电流密度下,可逆比容量达171.8 mAh·g−1。通过循环伏安(CV)和恒电流间歇滴定(GITT)等方法测试研究了K+存储的动力学特征以及在CTRCs中的储钾机理。结果表明CTRC电极中K+迁移主要受表面诱导电容过程控制,存储K+的过程符合“吸附–弱插层”机理。本文探索了CTR作为高性能PIBs电极材料的潜力,同时也为CTR的高附加值利用开辟了新的途径。
  • Research Article

    From waste to wealth: Coal tar residue derived carbon materials as low-cost anodes for potassium-ion batteries

    + Author Affiliations
    • Carbon materials are widely recognized as highly promising electrode materials for various energy storage system applications. Coal tar residues (CTR), as a type of carbon-rich solid waste with high value-added utilization, are crucially important for the development of a more sustainable world. In this study, we employed a straightforward direct carbonization method within the temperature range of 700–1000°C to convert the worthless solid waste CTR into economically valuable carbon materials as anodes for potassium-ion batteries (PIBs). The effect of carbonization temperature on the microstructure and the potassium ions storage properties of CTR-derived carbons (CTRCs) were systematically explored by structural and morphological characterization, alongside electrochemical performances assessment. Based on the co-regulation between the turbine layers, crystal structure, pore structure, functional groups, and electrical conductivity of CTR-derived carbon carbonized at 900°C (CTRC-900H), the electrode material with high reversible capacity of 265.6 mAh·g−1 at 50 mA·g−1, a desirable cycling stability with 93.8% capacity retention even after 100 cycles, and the remarkable rate performance for PIBs were obtained. Furthermore, cyclic voltammetry (CV) at different scan rates and galvanostatic intermittent titration technique (GITT) have been employed to explore the potassium ions storage mechanism and electrochemical kinetics of CTRCs. Results indicate that the electrode behavior is predominantly governed by surface-induced capacitive processes, particularly under high current densities, with the potassium storage mechanism characterized by an “adsorption–weak intercalation” mechanism. This work highlights the potential of CTR-based carbon as a promising electrode material category suitable for high-performance PIBs electrodes, while also provides valuable insights into the new avenues for the high value-added utilization of CTR.
    • loading
    • Supplementary Information-s12613-024-2930-8.docx
    • [1]
      A. Soni, P.K. Das, A.W. Hashmi, M. Yusuf, H. Kamyab, and S. Chelliapan, Challenges and opportunities of utilizing municipal solid waste as alternative building materials for sustainable development goals: A review, Sustain. Chem. Pharm., 27(2022), art. No. 100706. doi: 10.1016/j.scp.2022.100706
      [2]
      X.X. Peng, Y.S. Jiang, Z.H. Chen, et al., Recycling municipal, agricultural and industrial waste into energy, fertilizers, food and construction materials, and economic feasibility: A review, Environ. Chem. Lett., 21(2023), No. 2, p. 765. doi: 10.1007/s10311-022-01551-5
      [3]
      J.C. Altamirano, S.S. Yin, L. Belova, G. Poma, and A. Covaci, Exploring the hidden chemical landscape: Non-target and suspect screening analysis for investigating solid waste-associated environments, Environ. Res., 245(2024), art. No. 118006. doi: 10.1016/j.envres.2023.118006
      [4]
      B.B. Qiu, C.H. Yang, Q.N. Shao, Y. Liu, and H.Q. Chu, Recent advances on industrial solid waste catalysts for improving the quality of bio-oil from biomass catalytic cracking: A review, Fuel, 315(2022), art. No. 123218. doi: 10.1016/j.fuel.2022.123218
      [5]
      Z.H. Lu, S. Guo, J. Shen, et al., Evolution of structure and pyrolysis characteristics of coal tar residue after extraction, J. Energy Inst., 111(2023), art. No. 101421. doi: 10.1016/j.joei.2023.101421
      [6]
      X.L. Wang, J. Shen, Y.X. Niu, Q.T. Sheng, G. Liu, and Y.G. Wang, Solvent extracting coal gasification tar residue and the extracts characterization, J. Cleaner Prod., 133(2016), p. 965. doi: 10.1016/j.jclepro.2016.06.060
      [7]
      F.Y. Gao, C.C. Zhou, Z.H. Wang, W.W. Zhu, X. Wang, and G.J. Liu, Solid-oil separation of coal tar residue to reduce polycyclic aromatic hydrocarbons via microwave-assisted extraction, J. Environ. Manage., 337(2023), art. No. 117679. doi: 10.1016/j.jenvman.2023.117679
      [8]
      Y.X. Niu, X.L. Wang, J. Shen, et al., Separation of coal gasification tar residue by solvent extracting, Sep. Purif. Technol., 188(2017), p. 98. doi: 10.1016/j.seppur.2017.07.002
      [9]
      X.L. Wang, J. Shen, Y.X. Niu, Y.G. Wang, G. Liu, and Q.T. Sheng, Removal of phenol by powdered activated carbon prepared from coal gasification tar residue, Environ. Technol., 39(2018), No. 6, p. 694. doi: 10.1080/09593330.2017.1310304
      [10]
      L. Gao, F.Q. Dong, Q.W. Dai, G.Q. Zhong, U. Halik, and D.J. Lee, Coal tar residues based activated carbon: Preparation and characterization, J. Taiwan Inst. Chem. Eng., 63(2016), p. 166. doi: 10.1016/j.jtice.2016.02.029
      [11]
      Y.H. Wang, P. He, X.M. Zhao, W. Lei, and F.Q. Dong, Coal tar residues-based nanostructured activated carbon/Fe3O4 composite electrode materials for supercapacitors, J. Solid State Electrochem., 18(2014), No. 3, p. 665. doi: 10.1007/s10008-013-2303-0
      [12]
      S. Li, J.L. Qin, T.J. Gao, et al., Fabrication of Fe3C nanoparticles embedded in N-doped carbon nanotubes/porous carbon 3D materials derived from distilled grains for high performance of potassium ion battery, J. Alloys Compd., 912(2022), art. No. 165130. doi: 10.1016/j.jallcom.2022.165130
      [13]
      J. Xu, S.M. Dou, W. Zhou, et al., Scalable waste-plastic-derived carbon nanosheets with high contents of inbuilt nitrogen/sulfur sites for high performance potassium-ion hybrid capacitors, Nano Energy, 95(2022), art. No. 107015. doi: 10.1016/j.nanoen.2022.107015
      [14]
      X.X. Zhang, F. Wu, X.W. Lv, et al., Achieving sustainable and stable potassium-ion batteries by leaf-bioinspired nanofluidic flow, Adv. Mater., 34(2022), No. 39, art. No. 2204370. doi: 10.1002/adma.202204370
      [15]
      J.R. Wu, T. Yang, Y. Song, Z.H. Ma, X.D. Tian, and Z.J. Liu, Preparation of disordered carbon for alkali metal-ion (lithium, sodium, and potassium) batteries by pitch molecular modification: A review, Carbon, 221(2024), art. No. 118902. doi: 10.1016/j.carbon.2024.118902
      [16]
      D.Y. Wang, Q. Wang, M.X. Tan, et al., Biomass CQDs derivate carbon as high-performance anode for K-ion battery, J. Alloys Compd., 922(2022), art. No. 166260. doi: 10.1016/j.jallcom.2022.166260
      [17]
      J.M. Cao, K.Y. Zhang, J.L. Yang, Z.Y. Gu, and X.L. Wu, Differential bonding behaviors of sodium/potassium-ion storage in sawdust waste carbon derivatives, Chin. Chem. Lett., 35(2024), No. 4, art. No. 109304. doi: 10.1016/j.cclet.2023.109304
      [18]
      X. Li, Y. Zhou, B. Deng, J. Li, and Z. Xiao, Research progress of biomass carbon materials as anode materials for potassium-ion batteries, Front. Chem., 11(2023), art. No. 1162909. doi: 10.3389/fchem.2023.1162909
      [19]
      Y. Ma, W.H. Liu, W.H. Liu, et al., Coconut-solid-waste-derived hard-carbon anode materials for fast potassium ion storage, Coatings, 14(2024), No. 2, art. No. 208. doi: 10.3390/coatings14020208
      [20]
      J.G. Zheng, F.Y. Xiao, H.J. Jin, et al., Facile fabrication of MoS2 nanocrystals confined in waste leather derived N, P co-doped carbon fiber for long-lifespan of sodium/potassium ion batteries, J. Phys. Chem. Solids, 172(2023), art. No. 111080. doi: 10.1016/j.jpcs.2022.111080
      [21]
      Q. Zhao, Q.T. Zheng, S.H. Li, et al., Nitrogen/oxygen/sulfur tri-doped hard carbon nanospheres derived from waste tires with high sodium and potassium anodic performances, Inorg. Chem. Front., 10(2023), No. 9, p. 2574. doi: 10.1039/D2QI02378D
      [22]
      X. He, L. Zhong, X. Qiu, et al., Sustainable polyvinyl chloride-derived soft carbon anodes for potassium-ion storage: Electrochemical behaviors and mechanism, ChemSusChem, 16(2023), No. 19, art. No. e202300646. doi: 10.1002/cssc.202300646
      [23]
      Z.H. Kang, K.X. Sun, C.F. Sun, and Q. Liu, A plastics-derived organic anode material for practical and sustainable potassium-ion batteries, Int. J. Electrochem. Sci., 18(2023), No. 9, art. No. 100222. doi: 10.1016/j.ijoes.2023.100222
      [24]
      X.Y. Liu, H.C. Tao, C.Y. Tang, and X.L. Yang, Anthracite-derived carbon as superior anode for lithium/potassium-ion batteries, Chem. Eng. Sci., 248(2022), art. No. 117200. doi: 10.1016/j.ces.2021.117200
      [25]
      H. Wang, F. Sun, J.H. Dong, et al., Mechanochemistry transforming high-surface-area coal-based activated carbon into densified carbon with optimized multi-scale structures for enhanced sodium/potassium ion storage, Electrochim. Acta, 475(2024), art. No. 143579. doi: 10.1016/j.electacta.2023.143579
      [26]
      W. Wei, F. Wang, J. Yang, J. Zou, J. Li, and K. Shi, A superior potassium-ion anode material from pitch-based activated carbon fibers with hierarchical pore structure prepared by metal catalytic activation, ACS Appl. Mater. Interfaces, 13(2021), No. 5, p. 6557. doi: 10.1021/acsami.0c22184
      [27]
      Y. Jiang, N. Xiao, X.D. Song, et al., Coal tar pitch derived sp2 configuration-dominated vacancy-rich carbon with expand interlayer spacing for low-voltage, durable, and fast potassium storage, Adv. Funct. Mater., 34(2024), No. 26, art. No. 2316207. doi: 10.1002/adfm.202316207
      [28]
      Y. Jiang, J.M. Jiang, C. Geng, et al., Rational regulation of defect-rich hierarchical porous carbon nanosheets as sustainable anode materials for potassium-ion storage, J. Energy Storage, 75(2024), art. No. 109544. doi: 10.1016/j.est.2023.109544
      [29]
      X. Li, Q. Chu, D.Y. Zhao, et al., Improved electrochemical performance of soft carbon derived from coal liquefaction residue coated with expanded graphite for lithium/potassium batteries, Chem. Eng. Sci., 281(2023), art. No. 119108. doi: 10.1016/j.ces.2023.119108
      [30]
      H. Ullah, Q. Abbas, M.U. Ali, et al., Synergistic effects of low-/medium-vacuum carbonization on physico-chemical properties and stability characteristics of biochars, Chem. Eng. J., 373(2019), p. 44. doi: 10.1016/j.cej.2019.05.025
      [31]
      Y.G. Wang, X.Y. Wei, S.K. Wang, et al., Structural evaluation of Xiaolongtan lignite by direct characterization and pyrolytic analysis, Fuel Process. Technol., 144(2016), p. 248. doi: 10.1016/j.fuproc.2015.12.034
      [32]
      Q.X. Yao, X.X. Kong, X.M. Dai, et al., 1H NMR and 13C NMR characterization of n-heptane extraction of low-temperature coal tar reacted with formaldehyde, Energy Sources Part A, 42(2020), No. 12, p. 1490. doi: 10.1080/15567036.2019.1604863
      [33]
      J.C. Yan, Z.P. Lei, Z.K. Li, et al., Molecular structure characterization of low-medium rank coals via XRD, solid state 13C NMR and FTIR spectroscopy, Fuel, 268(2020), art. No. 117038. doi: 10.1016/j.fuel.2020.117038
      [34]
      Z.H. Lu, S. Guo, J. Shen, et al., Effect of solvent extraction on the composition of coal tar residues and their pyrolysis characteristics, Energy Sources Part A, 44(2022), No. 4, p. 9204. doi: 10.1080/15567036.2022.2129881
      [35]
      G.L. Zhang, T.T. Guan, M. Cheng, et al., Harvesting honeycomb-like carbon nanosheets with tunable mesopores from mild-modified coal tar pitch for high-performance flexible all-solid-state supercapacitors, J. Power Sources, 448(2020), art. No. 227446. doi: 10.1016/j.jpowsour.2019.227446
      [36]
      N. Sun, R. Zhao, M.Y. Xu, S.H. Zhang, R.A. Soomro, and B. Xu, Design advanced nitrogen/oxygen co-doped hard carbon microspheres from phenolic resin with boosted Na-storage performance, J. Power Sources, 564(2023), art. No. 232879. doi: 10.1016/j.jpowsour.2023.232879
      [37]
      Q. Sun, D.P. Li, J. Cheng, et al., Nitrogen-doped carbon derived from pre-oxidized pitch for surface dominated potassium-ion storage, Carbon, 155(2019), p. 601. doi: 10.1016/j.carbon.2019.08.059
      [38]
      Z.R. Wu, J. Zou, S. Shabanian, K. Golovin, and J. Liu, The roles of electrolyte chemistry in hard carbon anode for potassium-ion batteries, Chem. Eng. J., 427(2022), art. No. 130972. doi: 10.1016/j.cej.2021.130972
      [39]
      C.G. Wang and F.G. Zeng, Molecular structure characterization of CS2–NMP extract and residue for Malan bituminous coal via solid-state 13C NMR, FTIR, XPS, XRD, and CAMD techniques, Energy Fuels, 34(2020), No. 10, p. 12142. doi: 10.1021/acs.energyfuels.0c01877
      [40]
      M.H. Song, Q. Song, T. Zhang, et al., Growing curly graphene layer boosts hard carbon with superior sodium-ion storage, Nano Res., 16(2023), No. 7, p. 9299. doi: 10.1007/s12274-023-5539-8
      [41]
      S. Alvin, D. Yoon, C. Chandra, et al., Revealing sodium ion storage mechanism in hard carbon, Carbon, 145(2019), p. 67. doi: 10.1016/j.carbon.2018.12.112
      [42]
      J. Kister, N. Pieri, R. Alvarez, M.A. Díez, and J.J. Pis, Effects of preheating and oxidation on two bituminous coals assessed by synchronous UV fluorescence and FTIR spectroscopy, Energy Fuels, 10(1996), No. 4, p. 948. doi: 10.1021/ef950159a
      [43]
      R. Torres-Sciancalepore, A. Fernandez, D. Asensio, et al., Kinetic and thermodynamic comparative study of quince bio-waste slow pyrolysis before and after sustainable recovery of pectin compounds, Energy Convers. Manage., 252(2022), art. No. 115076. doi: 10.1016/j.enconman.2021.115076
      [44]
      D. Zhao, H.Q. Zhao, J.Q. Ye, et al., Oxygen functionalization boosted sodium adsorption-intercalation in coal based needle coke, Electrochim. Acta, 329(2020), art. No. 135127. doi: 10.1016/j.electacta.2019.135127
      [45]
      R.K. Mishra, K. Mohanty, and X.H. Wang, Pyrolysis kinetic behavior and Py-GC–MS analysis of waste dahlia flowers into renewable fuel and value-added chemicals, Fuel, 260(2020), art. No. 116338. doi: 10.1016/j.fuel.2019.116338
      [46]
      L.N. Qin, S.D. Xu, Z.H. Lu, et al., Cellulose as a novel precursor to construct high-performance hard carbon anode toward enhanced sodium-ion batteries, Diam. Relat. Mater., 136(2023), art. No. 110065. doi: 10.1016/j.diamond.2023.110065
      [47]
      J.H. Choi, G.D. Park, D.S. Jung, and Y.C. Kang, Pitch-derived carbon coated SnO2–CoO yolk–shell microspheres with excellent long-term cycling and rate performances as anode materials for lithium-ion batteries, Chem. Eng. J., 369(2019), p. 726. doi: 10.1016/j.cej.2019.03.123
      [48]
      Q.D. Liu, F. Han, J.F. Zhou, et al., Boosting the potassium-ion storage performance in soft carbon anodes by the synergistic effect of optimized molten salt medium and N/S dual-doping, ACS Appl. Mater. Interfaces, 12(2020), No. 18, p. 20838. doi: 10.1021/acsami.0c00679
      [49]
      D.P. Qiu and Y.L. Hou, Carbon materials toward efficient potassium storage: Rational design, performance evaluation and potassium storage mechanism, Green Energy Environ., 8(2023), No. 1, p. 115. doi: 10.1016/j.gee.2022.05.007
      [50]
      Y.F. Zhang, W.R. Wei, C.L. Zhu, et al., Interconnected honeycomb-like carbon with rich nitrogen/sulfur doping for stable potassium ion storage, Electrochim. Acta, 424(2022), art. No. 140596. doi: 10.1016/j.electacta.2022.140596
      [51]
      J.L. Liu, T.T. Yin, B.B. Tian, et al., Unraveling the potassium storage mechanism in graphite foam, Adv. Energy Mater., 9(2019), No. 22, art. No. 1900579. doi: 10.1002/aenm.201900579
      [52]
      Y. Liu, Y.X. Lu, Y.S. Xu, et al., Pitch-derived soft carbon as stable anode material for potassium ion batteries, Adv. Mater., 32(2020), No. 17, art. No. 2000505. doi: 10.1002/adma.202000505
      [53]
      Y.X. Du, H.G. Fan, L.C. Bai, et al., Molten salt-assisted construction of hollow carbon spheres with outer-order and inner-disorder heterostructure for ultra-stable potassium ion storage, ACS Appl. Mater. Interfaces, 15(2023), No. 3, p. 4081. doi: 10.1021/acsami.2c19784

    Catalog


    • /

      返回文章
      返回