留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 32 Issue 2
Feb.  2025

图(9)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  248
  • HTML全文浏览量:  101
  • PDF下载量:  21
  • 被引次数: 0
Xinguang Zhu, Chenxi Ding, Zhe Sui, Hong Su, and Xu Guo, Rock fracture mechanism of buffer blasting with cushion layer at the borehole bottom, Int. J. Miner. Metall. Mater., 32(2025), No. 2, pp. 325-334. https://doi.org/10.1007/s12613-024-2941-5
Cite this article as:
Xinguang Zhu, Chenxi Ding, Zhe Sui, Hong Su, and Xu Guo, Rock fracture mechanism of buffer blasting with cushion layer at the borehole bottom, Int. J. Miner. Metall. Mater., 32(2025), No. 2, pp. 325-334. https://doi.org/10.1007/s12613-024-2941-5
引用本文 PDF XML SpringerLink
研究论文

孔底垫层缓冲爆破的岩石破裂机理研究


  • 通讯作者:

    丁晨曦    E-mail: dingcx91@sina.com

文章亮点

  • (1) 考虑孔底垫层的作用效应,研究了孔底垫层缓冲爆破的岩石破裂机理。
  • (2) 开展了孔底垫层和起爆方式对孔底岩体完整性影响的爆破模型实验研究。
  • (3) 模拟了不同孔底垫层厚度下爆炸岩石应力波传播及裂纹动态扩展过程。
  • 本文主要考虑孔底垫层的作用效应,研究了孔底垫层缓冲爆破的岩石破裂机理,重点分析了试件中爆炸应力演化规律、裂纹分布特征和岩石破裂特性。首先,结合动态焦散线原理,开展了孔底垫层和起爆方式对孔底岩体完整性影响的爆破模型实验研究,实验结果表明采用孔底垫层和孔底起爆相结合的方式能够有效保护孔底岩体的完整性。然后,采用连续–非连续单元法(CDEM),引入Landau爆源模型,模拟了不同孔底垫层厚度下爆炸岩石应力波传播及裂纹动态扩展过程。数值模拟结果表明,垫层厚度越大,对爆炸产生的能量吸收作用越明显,孔底岩体的裂纹数量越小,进一步说明了垫层的存在对保护孔底岩体完整性起到了一定的积极作用。
  • Research Article

    Rock fracture mechanism of buffer blasting with cushion layer at the borehole bottomRock fracture mechanism of buffer blasting with cushion layer at the borehole bottom

    + Author Affiliations
    • This study primarily investigates the rock fracture mechanism of bottom cushion layer blasting and explores the effects of the bottom cushion layer on rock fragmentation. It involves analyses of the evolution patterns of blasting stress, characteristics of crack distribution, and rock fracture features in the specimens. First, blasting model experiments were carried out using the dynamic caustics principle to investigate the influence of bottom cushion layers and initiation methods on the integrity of the bottom rock mass. The experimental results indicate that the combined use of bottom cushion layers and inverse initiation effectively protects the integrity of the bottom rock mass. Subsequently, the process of stress wave propagation and dynamic crack propagation in rocks was simulated using the continuum–discontinuum element method (CDEM) and the Landau explosion source model, with varying thicknesses of bottom cushion layers. The numerical simulation results indicate that with increasing cushion thickness, the absorption of energy generated by the explosion becomes more pronounced, resulting in fewer cracks in the bottom rock mass. This illustrates the positive role of the cushion layer in protecting the integrity of the bottom rock mass.
    • loading
    • [1]
      Z.X. Zhang, J.A. Sanchidrián, F. Ouchterlony, and S. Luukkanen, Reduction of fragment size from mining to mineral processing: A review, Rock Mech. Rock Eng., 56(2023), No. 1, p. 747. doi: 10.1007/s00603-022-03068-3
      [2]
      P. Xu, R.S. Yang, J.J. Zuo, et al., Research progress of the fundamental theory and technology of rock blasting, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 705. doi: 10.1007/s12613-022-2464-x
      [3]
      F.Y. Ren, T.A.M. Sow, R.X. He, and X.R. Liu, Optimization and application of blasting parameters based on the “pushing-wall” mechanism, Int. J. Miner. Metall. Mater., 19(2012), No. 10, p. 879. doi: 10.1007/s12613-012-0642-y
      [4]
      H.J. Wu, M. Gong, R.S. Yang, X.D. Wu, and X.Y. Liu, Double-face intelligent hole position planning method for precision blasting in roadways using a computer-controlled drill jumbo, Int. J. Miner. Metall. Mater., 30(2023), No. 6, p.1025. doi: 10.1007/s12613-022-2575-4
      [5]
      Z.G. Yao, Q.F. Tian, Y. Fang, L.B. Ye, S. Pu, and X.F. Fang, Propagation and attenuation of blast vibration waves in closely spaced tunnels: A case study, Arabian J. Sci. Eng., 47(2022), No. 4, p. 4239. doi: 10.1007/s13369-021-05959-z
      [6]
      N. Kumar Bhagat, A.K. Mishra, R.K. Singh, C. Sawmliana, and P.K. Singh, Application of logistic regression, CART and random forest techniques in prediction of blast-induced slope failure during reconstruction of railway rock-cut slopes, Eng. Fail. Anal., 137(2022), art. No. 106230. doi: 10.1016/j.engfailanal.2022.106230
      [7]
      X.X. Wu, Y.G. Hu, M.S. Liu, G. Zhao, and Z.W. Yang, Research progress of blasting technology in hydropower engineering, J. Changjiang River Sci.c Res. Inst., 38(2021), No. 10, p. 112.
      [8]
      J.S. Zhao, B.R. Chen, Q. Jiang, et al., Microseismic monitoring of rock mass fracture response to blasting excavation of large underground Caverns under high geostress, Rock Mech. Rock Eng., 55(2022), No. 2, p. 733. doi: 10.1007/s00603-021-02709-3
      [9]
      C.X. Ding, R.S. Yang, C. Chen, X.G. Zhu, C. Feng, and Q.M. Xie, Space-time effect of blasting stress wave and blasting gas on rock fracture based on a cavity charge structure, Int. J. Rock Mech. Min. Sci., 160(2022), art. No. 105238. doi: 10.1016/j.ijrmms.2022.105238
      [10]
      T. Wang, W.W. Ye, L.Y. Liu, K. Liu, N.S. Jiang, and X.H. Feng, Disturbance failure mechanism of highly stressed rock in deep excavation: Current status and prospects, Int. J. Miner. Metall. Mater., 31(2024), No. 4, p. 611. doi: 10.1007/s12613-024-2864-1
      [11]
      R.S. Yang, C.X. Ding, L.Y. Yang, Z. Lei, Z.R. Zhang, and Y.B. Wang, Visualizing the blast-induced stress wave and blasting gas action effects using digital image correlation, Int. J. Rock Mech. Min. Sci., 112(2018), p. 47. doi: 10.1016/j.ijrmms.2018.10.007
      [12]
      X.T. Liang, C.X. Ding, X.G. Zhu, J. Zhou, C. Chen, and X. Guo, Visualization study on stress evolution and crack propagation of jointed rock mass under blasting load, Eng. Fract. Mech., 296(2024), art. No. 109833. doi: 10.1016/j.engfracmech.2023.109833
      [13]
      R.S. Yang, J.J. Zuo, L.W. Ma, Y. Zhao, Z. Liu, and Q.M. Xie, Analysis of explosion wave interactions and rock breaking effects during dual initiation, Int. J. Miner. Metall. Mater., 31(2024), No. 8, p. 1788. doi: 10.1007/s12613-024-2830-y
      [14]
      C.X. Ding, R.S. Yang, X. Guo, Z. Sui, C.L. Xiao, and L.Y. Yang, Effects of the initiation position on the damage and fracture characteristics of linear-charge blasting in rock, Int. J. Miner. Metall. Mater., 31(2024), No. 3, p. 443. doi: 10.1007/s12613-023-2765-8
      [15]
      X.D. Li, K.W. Liu, Y.Y. Sha, J.C. Yang, and R.T. Song, Numerical investigation on rock fragmentation under decoupled charge blasting, Comput. Geotech., 157(2023), art. No. 105312. doi: 10.1016/j.compgeo.2023.105312
      [16]
      X.M. Lou, P. Zhou, J. Yu, and M.W. Sun, Analysis on the impact pressure on blast hole wall with radial air-decked charge based on shock tube theory, Soil Dyn. Earthquake Eng., 128(2020), art. No. 105905. doi: 10.1016/j.soildyn.2019.105905
      [17]
      X.D. Wu, M. Gong, H.J. Wu, G.F. Hu, and S.J. Wang, Vibration reduction technology and the mechanisms of surrounding rock damage from blasting in neighborhood tunnels with small clearance, Int. J. Min. Sci. Technol., 33(2023), No. 5, p. 625. doi: 10.1016/j.ijmst.2022.10.009
      [18]
      G.X. Liu, W.B. Lu, X.Q. Niu, G.H. Wang, M. Chen, and P. Yan, Excavation shaping and damage control technique for the breccia lava dam foundation at the Bai-he-tan hydropower station: A case study, Rock Mech. Rock Eng., 53(2020), No. 4, p. 1889. doi: 10.1007/s00603-019-02013-1
      [19]
      L. Huang, Study on the Pliability Cushion Explosion Method and Effectively of the Protected Level of Dam Foundation Rock ’ Excavating [Dissertation], Wuhan University of Technology, Wuhan, 2002.
      [20]
      Y.Z. Zhang, W.B. Lu, M. Chen, P. Yan, and Y.G. Hu, Dam foundation excavation techniques in China: A review, J. Rock Mech. Geotech. Eng., 5(2013), No. 6, p. 460. doi: 10.1016/j.jrmge.2013.08.002
      [21]
      X.X. Wu, G. Zhao, Z.Y. Zhang, et al., A study of the theory of duplicate cushion and its optimized design by comupter, Explos. Mater., 4(2000), No. 4, p. 8.
      [22]
      H.R. Hu, W.B. Lu, P. Yan, M. Chen, and Q. Gao, A vibration-isolating blast technique with shock-reflection device for dam foundation excavation in complicated geological conditions, Shock Vib., 2018(2018), No. 1, art. No. 8029513. doi: 10.1155/2018/8029513
      [23]
      H.R. Hu, W.B. Lu, P. Yan, M. Chen, Q.D. Gao, and Z.W. Yang, A new horizontal rock dam foundation blasting technique with a shock-reflection device arranged at the bottom of vertical borehole, Eur. J. Environ. Civ. Eng., 24(2020), No. 4, p. 481. doi: 10.1080/19648189.2017.1399168
      [24]
      W.B. Lu, H.R. Hu, P. Yan, Y. Chen, Y.J. Rong, and Z.L. Wang, Vertical borehole shock-reflection blasting technique and its application in foundation excavation, Chin. J. Rock Mech. Eng., 37(2018), No. S1, p. 3143.
      [25]
      H.K. Kutter and C. Fairhurst, On the fracture process in blasting, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 8(1971), No. 3, p. 181. doi: 10.1016/0148-9062(71)90018-0
      [26]
      H.P. Rossmanith, Mechanics of Jointed and Faulted Rock, Routledge, London, 1998.
      [27]
      C.X. Ding, R.S. Yang, and L.Y. Yang, Experimental results of blast-induced cracking fractal characteristics and propagation behavior in deep rock mass, Int. J. Rock Mech. Min. Sci., 142(2021), art. No. 104772. doi: 10.1016/j.ijrmms.2021.104772
      [28]
      R.S. Yang, C.X. Ding, L.Y. Yang, and C. Chen, Model experiment on dynamic behavior of jointed rock mass under blasting at high-stress conditions, Tunnelling Underground Space Technol., 74(2018), p. 145. doi: 10.1016/j.tust.2018.01.017
      [29]
      S.H. Li, M.H. Zhao, Y.N. Wang, and Y. Rao, A new numerical method for Dem–Block and particle model, Int. J. Rock Mech. Min. Sci., 41(2004), No. S1, p. 414. doi: 10.1016/j.ijrmms.2004.03.076
      [30]
      C. Feng, S.H. Li, X.Y. Liu, and Y.N. Zhang, A semi-spring and semi-edge combined contact model in CDEM and its application to analysis of Jiweishan landslide, J. Rock Mech. Geotech. Eng., 6(2014), No. 1, p. 26. doi: 10.1016/j.jrmge.2013.12.001

    Catalog


    • /

      返回文章
      返回