Cite this article as: |
Boyang Fu, Maciej Moździerz, Andrzej Kulka, and Konrad Świerczek, Recent progress in Ni-rich layered oxides and related cathode materials for Li-ion cells, Int. J. Miner. Metall. Mater., 31(2024), No. 11, pp. 2345-2367. https://doi.org/10.1007/s12613-024-2948-y |
Konrad Świerczek E-mail: xi@agh.edu.pl
[1] |
S.C. Jiao, J.Y. Wang, Y.S. Hu, X.Q. Yu, and H. Li, High-capacity oxide cathode beyond 300 mAh/g, ACS Energy Lett., 8(2023), No. 7, p. 3025. doi: 10.1021/acsenergylett.3c00563
|
[2] |
Y.K. Sun, High-capacity layered cathodes for next-generation electric vehicles, ACS Energy Lett., 4(2019), No. 5, p. 1042. doi: 10.1021/acsenergylett.9b00652
|
[3] |
J.J. Xu, X.Y. Cai, S.M. Cai, et al., High-energy lithium-ion batteries: Recent progress and a promising future in applications, Energy Environ. Mater., 6(2023), No. 5, art. No. e12450. doi: 10.1002/eem2.12450
|
[4] |
A. Aishova, G.T. Park, C.S. Yoon, and Y.K. Sun, Cobalt-free high-capacity Ni-rich layered Li[Ni0.9Mn0.1]O2 cathode, Adv. Energy Mater., 10(2020), No. 4, art. No. 1903179. doi: 10.1002/aenm.201903179
|
[5] |
J.R. Dahn, U.V. Sacken, and C.A. Michal, Structure and electrochemistry of Li1± yNiO2 and a new Li2NiO2 phase with the Ni(OH)2 structure, Solid State Ionics, 44(1990), No. 1-2, p. 87. doi: 10.1016/0167-2738(90)90049-W
|
[6] |
H.H. Ryu, N.Y. Park, J.H. Seo, et al., A highly stabilized Ni-rich NCA cathode for high-energy lithium-ion batteries, Mater. Today, 36(2020), p. 73. doi: 10.1016/j.mattod.2020.01.019
|
[7] |
L.S. Li, Z. Zhang, S.H. Fu, Z.Z. Liu, and Y.M. Liu, Co-modification by LiAlO2-coating and Al-doping for LiNi0.5Co0.2Mn0.3O2 as a high-performance cathode material for lithium-ion batteries with a high cutoff voltage, J. Alloys Compd., 768(2018), p. 582. doi: 10.1016/j.jallcom.2018.07.223
|
[8] |
T. Ohzuku and Y. Makimura, Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries, Chem. Lett., 30(2001), No. 7, p. 642. doi: 10.1246/cl.2001.642
|
[9] |
J.G. Gao, Z.P. Qin, G.Y. Zhao, et al., Modulating NCM622 electrode to efficiently boost the lithium storage and thermal safety of its full batteries, Energy Storage Mater., 67(2024), art. No. 103332. doi: 10.1016/j.ensm.2024.103332
|
[10] |
S.L. Wang, S.M. Chen, W.Q. Gao, L.L. Liu, and S.J. Zhang, A new additive 3-Isocyanatopropyltriethoxysilane to improve electrochemical performance of Li/NCM622 half-cell at high voltage, J. Power Sources, 423(2019), p. 90. doi: 10.1016/j.jpowsour.2019.03.046
|
[11] |
Z.S. Wang, C.L. Zhu, J.D. Liu, et al., Catalytically induced robust inorganic-rich cathode electrolyte interphase for 4.5 V Li||NCM622 batteries, Adv. Funct. Mater., 33(2023), No. 19, art. No. 2212150. doi: 10.1002/adfm.202212150
|
[12] |
G. Salitra, E. Markevich, M. Afri, et al., High-performance cells containing lithium metal anodes, LiNi0.6Co0.2Mn0.2O2 (NCM 622) cathodes, and fluoroethylene carbonate-based electrolyte solution with practical loading, ACS Appl. Mater. Interfaces, 10(2018), No. 23, p. 19773. doi: 10.1021/acsami.8b07004
|
[13] |
K.J. Park, M.J. Choi, F. Maglia, et al., High-capacity concentration gradient Li[Ni0.865Co0.120Al0.015]O2 cathode for lithium-ion batteries, Adv. Energy Mater., 8(2018), No. 19, art. No. 1703612. doi: 10.1002/aenm.201703612
|
[14] |
C.M. Julien and A. Mauger, NCA, NCM811, and the route to Ni-richer lithium-ion batteries, Energies, 13(2020), No. 23, art. No. 6363. doi: 10.3390/en13236363
|
[15] |
F. Reuter, A. Baasner, J. Pampel, et al., Importance of capacity balancing on the electrochemical performance of Li[Ni0.8Co0.1Mn0.1]O2 (NCM811)/silicon full cells, J. Electrochem. Soc., 166(2019), No. 14, p. A3265. doi: 10.1149/2.0431914jes
|
[16] |
H.L. Zhang and J.J. Zhang, An overview of modification strategies to improve LiNi0.8Co0.1Mn.1O2 (NCM811) cathode performance for automotive lithium-ion batteries, eTransportation, 7(2021), art. No. 100105. doi: 10.1016/j.etran.2021.100105
|
[17] |
L.H. Zhang, F.Q. Min, Y. Luo, et al., Practical 4.4 V Li||NCM811 batteries enabled by a thermal stable and HF free carbonate-based electrolyte, Nano Energy, 96(2022), art. No. 107122. doi: 10.1016/j.nanoen.2022.107122
|
[18] |
M.Y. Zhang, C.Y. Wang, J.K. Zhang, G. Li, and L. Gu, Preparation and electrochemical characterization of La and Al co-doped NCM811 cathode materials, ACS Omega, 6(2021), No. 25, p. 16465. doi: 10.1021/acsomega.1c01552
|
[19] |
Y.Z. Zheng, N.B. Xu, S.J. Chen, et al., Construction of a stable LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode interface by a multifunctional organosilicon electrolyte additive, ACS Appl. Energy Mater., 3(2020), No. 3, p. 2837. doi: 10.1021/acsaem.9b02486
|
[20] |
W.D. Li, X.M. Liu, Q. Xie, Y. You, M.F. Chi, and A. Manthiram, Long-term cyclability of NCM-811 at high voltages in lithium-ion batteries: An In-depth diagnostic study, Chem. Mater., 32(2020), No. 18, p. 7796. doi: 10.1021/acs.chemmater.0c02398
|
[21] |
S.S. Zhang, Understanding of performance degradation of LiNi0.80Co0.10Mn0.10O2 cathode material operating at high potentials, J. Energy Chem., 41(2020), p. 135. doi: 10.1016/j.jechem.2019.05.013
|
[22] |
M.H. Kim, H.S. Shin, D. Shin, and Y.K. Sun, Synthesis and electrochemical properties of Li[Ni0.8Co0.1Mn0.1]O2 and Li[Ni0.8Co0.2]O2 via co-precipitation, J. Power Sources, 159(2006), No. 2, p. 1328. doi: 10.1016/j.jpowsour.2005.11.083
|
[23] |
Y. Cheng, X.Z. Zhang, Q.Y. Leng, et al., Boosting electrochemical performance of Co-free Ni-rich cathodes by combination of Al and high-valence elements, Chem. Eng. J., 474(2023), art. No. 145869. doi: 10.1016/j.cej.2023.145869
|
[24] |
W.B. Hua, J.L. Zhang, S.N. Wang, et al., Long-range cationic disordering induces two distinct degradation pathways in Co-free Ni-rich layered cathodes, Angew. Chem. Int. Ed., 62(2023), No. 12, art. No. e202214880. doi: 10.1002/anie.202214880
|
[25] |
H. Li, L. Wang, Y.Z. Song, et al., Understanding the insight mechanism of chemical-mechanical degradation of layered Co-free Ni-rich cathode materials: A review, Small, 19(2023), No. 32, art. No. 2302208. doi: 10.1002/smll.202302208
|
[26] |
N. Li, S. Sallis, J.K. Papp, B.D. McCloskey, W.L. Yang, and W. Tong, Correlating the phase evolution and anionic redox in Co-Free Ni-Rich layered oxide cathodes, Nano Energy, 78(2020), art. No. 105365. doi: 10.1016/j.nanoen.2020.105365
|
[27] |
A. Liu, N. Zhang, J.E. Stark, P. Arab, H.Y. Li, and J.R. Dahn, Synthesis of Co-free Ni-rich single crystal positive electrode materials for lithium ion batteries: Part I. two-step lithiation method for Al- or Mg-doped LiNiO2, J. Electrochem. Soc., 168(2021), No. 4, art. No. 040531. doi: 10.1149/1945-7111/abf7e8
|
[28] |
J.J. Liu, Y.F. Yuan, J.H. Zheng, et al., Understanding the synthesis kinetics of single-crystal Co-free Ni-rich cathodes, Angew. Chem. Int. Ed., 62(2023), No. 20, art. No. e202302547. doi: 10.1002/anie.202302547
|
[29] |
T.C. Liu, L. Yu, J.J. Liu, et al., Understanding Co roles towards developing Co-free Ni-rich cathodes for rechargeable batteries, Nat. Energy, 6(2021), No. 3, p. 277. doi: 10.1038/s41560-021-00776-y
|
[30] |
L.S. Ni, R.T. Guo, S.S. Fang, et al., Crack-free single-crystalline Co-free Ni-rich LiNi0.95Mn0.05O2 layered cathode, eScience, 2(2022), No. 1, p. 116. doi: 10.1016/j.esci.2022.02.006
|
[31] |
Y.L. Liu, P.H. Xiao, G.A. Botton, et al., Tungsten infused grain boundaries enabling universal performance enhancement of Co-free Ni-rich cathode materials, J. Electrochem. Soc., 168(2021), No. 12, art. No. 120514. doi: 10.1149/1945-7111/ac3c26
|
[32] |
N. Voronina, Y.K. Sun, and S.T. Myung, Co-free layered cathode materials for high energy density lithium-ion batteries, ACS Energy Lett., 5(2020), No. 6, p. 1814. doi: 10.1021/acsenergylett.0c00742
|
[33] |
C. Wang, L. Tan, H.L. Yi, et al., Unveiling the impact of residual Li conversion and cation ordering on electrochemical performance of Co-free Ni-rich cathodes, Nano Res., 15(2022), No. 10, p. 9038. doi: 10.1007/s12274-022-4889-0
|
[34] |
Y.K. Xi, M.J. Wang, L. Xu, et al., A new Co-free Ni-rich LiNi0.8Fe0.1Mn0.1O2 cathode for low-cost Li-ion batteries, ACS Appl. Mater. Interfaces, 13(2021), No. 48, p. 57341. doi: 10.1021/acsami.1c18303
|
[35] |
J.U. Choi, N. Voronina, Y.K. Sun, and S.T. Myung, Recent progress and perspective of advanced high-energy Co-less Ni-rich cathodes for Li-ion batteries: Yesterday, today, and tomorrow, Adv. Energy Mater., 10(2020), No. 42, art. No. 2002027. doi: 10.1002/aenm.202002027
|
[36] |
S. Jamil, G. Wang, M. Fasehullah, and M.W. Xu, Challenges and prospects of nickel-rich layered oxide cathode material, J. Alloys Compd., 909(2022), art. No. 164727. doi: 10.1016/j.jallcom.2022.164727
|
[37] |
L.S. Li, D.M. Wang, G.J. Xu, et al., Recent progress on electrolyte functional additives for protection of nickel-rich layered oxide cathode materials, J. Energy Chem., 65(2022), p. 280. doi: 10.1016/j.jechem.2021.05.049
|
[38] |
Y. Lu, Y.D. Zhang, Q. Zhang, F.Y. Cheng, and J. Chen, Recent advances in Ni-rich layered oxide particle materials for lithium-ion batteries, Particuology, 53(2020), p. 1. doi: 10.1016/j.partic.2020.09.004
|
[39] |
H.H. Ryu, H.H. Sun, S.T. Myung, C.S. Yoon, and Y.K. Sun, Reducing cobalt from lithium-ion batteries for the electric vehicle era, Energy Environ. Sci., 14(2021), No. 2, p. 844. doi: 10.1039/D0EE03581E
|
[40] |
C. Xu, P.J. Reeves, Q. Jacquet, and C.P. Grey, Phase behavior during electrochemical cycling of Ni-rich cathode materials for Li-ion batteries, Adv. Energy Mater., 11(2021), No. 7, art. No. 2003404. doi: 10.1002/aenm.202003404
|
[41] |
S.S. Zhang, Problems and their origins of Ni-rich layered oxide cathode materials, Energy Storage Mater., 24(2020), p. 247. doi: 10.1016/j.ensm.2019.08.013
|
[42] |
A. Chakraborty, S. Kunnikuruvan, S. Kumar, et al., Layered cathode materials for lithium-ion batteries: Review of computational studies on LiNi1– x– yCo xMn yO2 and LiNi1– x– yCo xAl yO2, Chem. Mater., 32(2020), No. 3, p. 915. doi: 10.1021/acs.chemmater.9b04066
|
[43] |
J. Yang, X.H. Liang, H.H. Ryu, C.S. Yoon, and Y.K. Sun, Ni-rich layered cathodes for lithium-ion batteries: From challenges to the future, Energy Storage Mater., 63(2023), art. No. 102969. doi: 10.1016/j.ensm.2023.102969
|
[44] |
S. Lee, L.S. Su, A. Mesnier, Z.H. Cui, and A. Manthiram, Cracking vs. surface reactivity in high-nickel cathodes for lithium-ion batteries, Joule, 7(2023), No. 11, p. 2430. doi: 10.1016/j.joule.2023.09.006
|
[45] |
Z.H. Cui and A. Manthiram, Thermal stability and outgassing behaviors of high-nickel cathodes in lithium-ion batteries, Angew. Chem. Int. Ed., 62(2023), No. 43, art. No. e202307243. doi: 10.1002/anie.202307243
|
[46] |
Z.Z. Cui, X. Li, X.Y. Bai, X.D. Ren, and X. Ou, A comprehensive review of foreign-ion doping and recent achievements for nickel-rich cathode materials, Energy Storage Mater., 57(2023), p. 14. doi: 10.1016/j.ensm.2023.02.003
|
[47] |
Y. Kim, H. Park, J.H. Warner, and A. Manthiram, Unraveling the intricacies of residual lithium in high-Ni cathodes for lithium-ion batteries, ACS Energy Lett., 6(2021), No. 3, p. 941. doi: 10.1021/acsenergylett.1c00086
|
[48] |
B.Y. Fu, A. Kulka, B. Wang, et al., Ni-rich LiNi0.905Co0.043Al0.052O2 cathode material for high-energy density Li-ion cells: Tuning lithium content, structural evolution, and full-cell performance, Electrochim. Acta, 494(2024), art. No. 144455. doi: 10.1016/j.electacta.2024.144455
|
[49] |
M. Liu, Y. Jiang, Y.P. Qin, Z.J. Feng, D.Y. Wang, and B.K. Guo, Enhanced electrochemical performance of Ni-rich cathodes by neutralizing residual lithium with acid compounds, ACS Appl. Mater. Interfaces, 13(2021), No. 46, p. 55072. doi: 10.1021/acsami.1c16482
|
[50] |
M. Jiang, D.L. Danilov, R.A. Eichel, and P.H.L. Notten, A review of degradation mechanisms and recent achievements for Ni-rich cathode-based Li-ion batteries, Adv. Energy Mater., 11(2021), No. 48, art. No. 2103005. doi: 10.1002/aenm.202103005
|
[51] |
B. Aktekin, M.J. Lacey, T. Nordh, et al., Understanding the capacity loss in LiNi0.5Mn1.5O4–Li4Ti5O12 lithium-ion cells at ambient and elevated temperatures, J. Phys. Chem. C, 122(2018), No. 21, p. 11234. doi: 10.1021/acs.jpcc.8b02204
|
[52] |
M. Dixit, B. Markovsky, F. Schipper, D. Aurbach, and D.T. Major, Origin of structural degradation during cycling and low thermal stability of Ni-rich layered transition metal-based electrode materials, J. Phys. Chem. C, 121(2017), No. 41, p. 22628. doi: 10.1021/acs.jpcc.7b06122
|
[53] |
H.J. Noh, S. Youn, C.S. Yoon, and Y.K. Sun, Comparison of the structural and electrochemical properties of layered Li[Ni xCo yMn z]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries, J. Power Sources, 233(2013), p. 121. doi: 10.1016/j.jpowsour.2013.01.063
|
[54] |
D. Leanza, M. Mirolo, C.A.F. Vaz, P. Novák, and M. El Kazzi, Surface degradation and chemical electrolyte oxidation induced by the oxygen released from layered oxide cathodes in Li-ion batteries, Batter. Supercaps, 2(2019), No. 5, p. 482. doi: 10.1002/batt.201800126
|
[55] |
J.T. Zhao, Y. Liang, X. Zhang, et al. , In situ construction of uniform and robust cathode–electrolyte interphase for Li-rich layered oxides, Adv. Funct. Mater., 31(2021), No. 8, art. No. 2009192. doi: 10.1002/adfm.202009192
|
[56] |
W.M. Dose, I. Temprano, J.P. Allen, et al., Electrolyte reactivity at the charged Ni-rich cathode interface and degradation in Li-ion batteries, ACS Appl. Mater. Interfaces, 14(2022), No. 11, p. 13206. doi: 10.1021/acsami.1c22812
|
[57] |
R. Jung, M. Metzger, F. Maglia, C. Stinner, and H.A. Gasteiger, Oxygen release and its effect on the cycling stability of LiNi xMn yCo zO2(NMC) cathode materials for Li-ion batteries, J. Electrochem. Soc., 164(2017), No. 7, p. A1361. doi: 10.1149/2.0021707jes
|
[58] |
S.M. Bak, E.Y. Hu, Y.N. Zhou, et al., Structural changes and thermal stability of charged LiNi xMn yCo zO2 cathode materials studied by combined in situ time-resolved XRD and mass spectroscopy, ACS Appl. Mater. Interfaces, 6(2014), No. 24, p. 22594. doi: 10.1021/am506712c
|
[59] |
S.K. Jung, H. Gwon, J. Hong,et al., Understanding the degradation mechanisms of LiNi0.5Co0.2Mn0.3O2 cathode material in lithium ion batteries, Adv. Energy Mater., 4(2014), No. 1, art. No. 1300787. doi: 10.1002/aenm.201300787
|
[60] |
K.W. Nam, S.M. Bak, E.Y. Hu, et al., Combining in situ synchrotron X-ray diffraction and absorption techniques with transmission electron microscopy to study the origin of thermal instability in overcharged cathode materials for lithium-ion batteries, Adv. Funct. Mater., 23(2013), No. 8, p. 1047. doi: 10.1002/adfm.201200693
|
[61] |
H. Li, P.F. Zhou, F.M. Liu, H.X. Li, F.Y. Cheng, and J. Chen, Stabilizing nickel-rich layered oxide cathodes by magnesium doping for rechargeable lithium-ion batteries, Chem. Sci., 10(2018), No. 5, p. 1374.
|
[62] |
J.H. Kim, H.H. Ryu, S.J. Kim, C.S. Yoon, and Y.K. Sun, Degradation mechanism of highly Ni-rich Li[Ni xCo yMn1– x– y]O2 cathodes with x > 0.9, ACS Appl. Mater. Interfaces, 11(2019), No. 34, p. 30936. doi: 10.1021/acsami.9b09754
|
[63] |
A.O. Kondrakov, A. Schmidt, J. Xu, et al., Anisotropic lattice strain and mechanical degradation of high- and low-nickel NCM cathode materials for Li-ion batteries, J. Phys. Chem. C, 121(2017), No. 6, p. 3286. doi: 10.1021/acs.jpcc.6b12885
|
[64] |
G.W. Nam, N.Y. Park, K.J. Park, et al., Capacity fading of Ni-rich NCA cathodes: Effect of microcracking extent, ACS Energy Lett., 4(2019), No. 12, p. 2995. doi: 10.1021/acsenergylett.9b02302
|
[65] |
H.H. Ryu, B. Namkoong, J.H. Kim, I. Belharouak, C.S. Yoon, and Y.K. Sun, Capacity fading mechanisms in Ni-rich single-crystal NCM cathodes, ACS Energy Lett., 6(2021), No. 8, p. 2726. doi: 10.1021/acsenergylett.1c01089
|
[66] |
D.J. Miller, C. Proff, J.G. Wen, D.P. Abraham, and J. Bareño, Observation of microstructural evolution in Li battery cathode oxide particles by in situ electron microscopy, Adv. Energy Mater., 3(2013), No. 8, p. 1098. doi: 10.1002/aenm.201300015
|
[67] |
K.J. Park, J.Y. Hwang, H.H. Ryu, et al., Degradation mechanism of Ni-enriched NCA cathode for lithium batteries: Are microcracks really critical?, ACS Energy Lett., 4(2019), No. 6, p. 1394. doi: 10.1021/acsenergylett.9b00733
|
[68] |
H.H. Ryu, K.J. Park, C.S. Yoon, and Y.K. Sun, Capacity fading of Ni-rich Li[Ni xCo yMn1– x– y]O2 (0.6≤x≤0.95) cathodes for high-energy-density lithium-ion batteries: Bulk or surface degradation?, Chem. Mater., 30(2018), No. 3, p. 1155. doi: 10.1021/acs.chemmater.7b05269
|
[69] |
A. Manthiram, A.V. Murugan, A. Sarkar, and T. Muraliganth, Nanostructured electrode materials for electrochemical energy storage and conversion, Energy Environ. Sci., 1(2008), No. 6, p. 621. doi: 10.1039/b811802g
|
[70] |
I. Nakai, K. Takahashi, Y. Shiraishi, T. Nakagome, and F. Nishikawa, Study of the Jahn-Teller distortion in LiNiO2 , a cathode material in a rechargeable lithium battery, by in situ X-ray absorption fine structure analysis, J. Solid State Chem., 140(1998), No. 1, p. 145. doi: 10.1006/jssc.1998.7943
|
[71] |
P. Kalyani and N. Kalaiselvi, Various aspects of LiNiO2 chemistry: A review, Sci. Technol. Adv. Mater., 6(2005), No. 6, p. 689. doi: 10.1016/j.stam.2005.06.001
|
[72] |
A. Rougier, I. Saadoune, P. Gravereau, P. Willmann, and C. Delmasa, Effect of cobalt substitution on cationic distribution in LiNi1– yCo yO2 electrode materials, Solid State Ionics, 90(1996), No. 1-4, p. 83. doi: 10.1016/S0167-2738(96)00370-0
|
[73] |
Z.H. Lu, D.D. MacNeil, and J.R. Dahn, Layered Li[Ni xCo1–2 xMn x]O2 cathode materials for lithium-ion batteries, Electrochem. Solid-State Lett., 4(2001), No. 12, p. A200. doi: 10.1149/1.1413182
|
[74] |
U.H. Kim, L.Y. Kuo, P. Kaghazchi, C.S. Yoon, and Y.K. Sun, Quaternary layered Ni-rich NCMA cathode for lithium-ion batteries, ACS Energy Lett., 4(2019), No. 2, p. 576. doi: 10.1021/acsenergylett.8b02499
|
[75] |
K. Kang and G. Ceder, Factors that affect Li mobility in layered lithium transition metal oxides, Phys. Rev. B, 74(2006), No. 9, art. No. 094105. doi: 10.1103/PhysRevB.74.094105
|
[76] |
R.R. Zhao, Z.L. Yang, J.X. Liang, et al., Understanding the role of Na-doping on Ni-rich layered oxide LiNi0.5Co0.2Mn0.3O2, J. Alloys Compd., 689(2016), p. 318. doi: 10.1016/j.jallcom.2016.07.230
|
[77] |
T. He, L. Chen, Y.F. Su, et al., The effects of alkali metal ions with different ionic radii substituting in Li sites on the electrochemical properties of Ni-rich cathode materials, J. Power Sources, 441(2019), art. No. 227195. doi: 10.1016/j.jpowsour.2019.227195
|
[78] |
Z.C. Ye, L. Qiu, W. Yang, et al., Nickel-rich layered cathode materials for lithium-ion batteries, Chemistry, 27(2021), No. 13, p. 4249. doi: 10.1002/chem.202003987
|
[79] |
R.P. Qing, J.L. Shi, D.D. Xiao, et al., Enhancing the kinetics of Li-rich cathode materials through the pinning effects of gradient surface Na+ doping, Adv. Energy Mater., 6(2016), No. 6, art. No. 1501914. doi: 10.1002/aenm.201501914
|
[80] |
M.M. Chen, E.Y. Zhao, D.F. Chen, et al., Decreasing Li/Ni disorder and improving the electrochemical performances of Ni-rich LiNi0.8Co0.1Mn0.1O2 by Ca doping, Inorg. Chem., 56(2017), No. 14, p. 8355. doi: 10.1021/acs.inorgchem.7b01035
|
[81] |
K. Kang, Y.S. Meng, J. Breger, C.P. Grey, and G. Ceder, Electrodes with high power and high capacity for rechargeable lithium batteries, ChemInform, 311(2006), No. 5763, p. 977.
|
[82] |
E.J. Wu, P.D. Tepesch, and G. Ceder, Size and charge effects on the structural stability of LiMO2 (M=transition metal) compounds, Philos. Mag. B, 77(1998), No. 4, p. 1039.
|
[83] |
L.S. Ni, H.Y. Chen, J.Q. Gao, et al., Calcium-induced pinning effect for high-performance Co-free Ni-rich NMA layered cathode, Nano Energy, 115(2023), art. No. 108743. doi: 10.1016/j.nanoen.2023.108743
|
[84] |
A. Rajkamal and H. Kim, Formation of pillar-ions in the Li layer decreasing the Li/Ni disorder and improving the structural stability of cation-doped Ni-rich LiNi0.8Co0.1Mn0.1O2: A first-principles verification, ACS Appl. Energy Mater., 4(2021), No. 12, p. 14068. doi: 10.1021/acsaem.1c02837
|
[85] |
Y.D. Zhang, J.D. Liu, W.C. Xu, et al., Gradient doping Mg and Al to stabilize Ni-rich cathode materials for rechargeable lithium-ion batteries, J. Power Sources, 535(2022), art. No. 231445. doi: 10.1016/j.jpowsour.2022.231445
|
[86] |
H.F. Yu, H.W. Zhu, Z.F. Yang, M.M. Liu, H. Jiang, and C.Z. Li, Bulk Mg-doping and surface polypyrrole-coating enable high-rate and long-life for Ni-rich layered cathodes, Chem. Eng. J., 412(2021), art. No. 128625. doi: 10.1016/j.cej.2021.128625
|
[87] |
C.L. Xu, W. Xiang, Z.G. Wu, et al., Dual-site lattice modification regulated cationic ordering for Ni-rich cathode towards boosted structural integrity and cycle stability, Chem. Eng. J., 403(2021), art. No. 126314. doi: 10.1016/j.cej.2020.126314
|
[88] |
A. D’Epifanio, F. Croce, F. Ronci, V. Rossi Albertini, E. Traversa, and B. Scrosati, Effect of Mg2+ doping on the structural, thermal, and electrochemical properties of LiNi0.8Co0.16Mg0.04O2, Chem. Mater., 16(2004), No. 18, p. 3559. doi: 10.1021/cm040130x
|
[89] |
C. Pouillerie, F. Perton, P. Biensan, J.P. Pérès, M. Broussely, and C. Delmas, Effect of magnesium substitution on the cycling behavior of lithium nickel cobalt oxide, J. Power Sources, 96(2001), No. 2, p. 293. doi: 10.1016/S0378-7753(00)00653-4
|
[90] |
J.S. Kim, S. Lim, H. Munakata, S.S. Kim, and K. Kanamura, Understanding the relationship of electrochemical properties and structure of microstructure-controlled core shell gradient type Ni-rich cathode material by single particle measurement, Electrochim. Acta, 390(2021), art. No. 138813. doi: 10.1016/j.electacta.2021.138813
|
[91] |
C.C. Chang, J.Y. Kim, and P.N. Kumta, Synthesis and electrochemical characterization of divalent cation-incorporated lithium nickel oxide, J. Electrochem. Soc., 147(2000), No. 5, p. 1722. doi: 10.1149/1.1393424
|
[92] |
B. Ammundsen, J. Paulsen, I. Davidson, et al., Local structure and first cycle redox mechanism of layered Li1.2Cr0.4Mn0.4O2 cathode material, J. Electrochem. Soc., 149(2002), No. 4, p. A431. doi: 10.1149/1.1456535
|
[93] |
L.J. Li, Z.X. Wang, Q.C. Liu, C. Ye, Z.Y. Chen, and L. Gong, Effects of chromium on the structural, surface chemistry and electrochemical of layered LiNi0.8− xCo0.1Mn0.1Cr xO2, Electrochim. Acta, 77(2012), p. 89. doi: 10.1016/j.electacta.2012.05.076
|
[94] |
C.X. Zhang, S. Xu, B. Han, et al., Towards rational design of high performance Ni-rich layered oxide cathodes: The interplay of borate-doping and excess lithium, J. Power Sources, 431(2019), p. 40. doi: 10.1016/j.jpowsour.2019.05.048
|
[95] |
L.C. Pan, Y.G. Xia, B. Qiu, et al., Structure and electrochemistry of B doped Li(Li0.2Ni0.13Co0.13Mn0.54)1− xB xO2 as cathode materials for lithium-ion batteries, J. Power Sources, 327(2016), p. 273. doi: 10.1016/j.jpowsour.2016.07.064
|
[96] |
K.J. Park, H.G. Jung, L.Y. Kuo, P. Kaghazchi, C.S. Yoon, and Y.K. Sun, Improved cycling stability of Li[Ni0.90Co0.05Mn0.05]O2 through microstructure modification by boron doping for Li-ion batteries, Adv. Energy Mater., 8(2018), No. 25, art. No. 1801202. doi: 10.1002/aenm.201801202
|
[97] |
X. Liu, G.L. Xu, L. Yin, et al., Probing the thermal-driven structural and chemical degradation of Ni-rich layered cathodes by Co/Mn exchange, J. Am. Chem. Soc., 142(2020), No. 46, p. 19745. doi: 10.1021/jacs.0c09961
|
[98] |
W.W. Yan, S.Y. Yang, Y.Y. Huang, Y. Yang, and G.H. Yuan, A review on doping/coating of nickel-rich cathode materials for lithium-ion batteries, J. Alloys Compd., 819(2020), art. No. 153048. doi: 10.1016/j.jallcom.2019.153048
|
[99] |
F.X. Xin, H. Zhou, Y.X. Zong, et al., What is the role of Nb in nickel-rich layered oxide cathodes for lithium-ion batteries?, ACS Energy Lett., 6(2021), No. 4, p. 1377.
|
[100] |
B. Wang, H.L. Zhao, F.P. Cai, et al., Surface engineering with ammonium niobium oxalate: A multifunctional strategy to enhance electrochemical performance and thermal stability of Ni-rich cathode materials at 4.5V cutoff potential, Electrochim. Acta, 403(2022), art. No. 139636. doi: 10.1016/j.electacta.2021.139636
|
[101] |
M. Wang, Y.Q. Han, M. Chu, L. Chen, M. Liu, and Y.J. Gu, Enhanced electrochemical performances of cerium-doped Li-Rich Li1.2Ni0.13Co0.13Mn0.54O2 cathode materials, J. Alloys Compd., 861(2021), art. No. 158000. doi: 10.1016/j.jallcom.2020.158000
|
[102] |
T. Thien Nguyen, U.H. Kim, C.S. Yoon, and Y.K. Sun, Enhanced cycling stability of Sn-doped Li[Ni0.90Co0.05Mn0.05]O2 via optimization of particle shape and orientation, Chem. Eng. J., 405(2021), art. No. 126887. doi: 10.1016/j.cej.2020.126887
|
[103] |
L. Cheng, Y.N. Zhou, B. Zhang, et al., High-rate Ni-rich single-crystal cathodes with highly exposed {010} active planes through in-situ Zr doping, Chem. Eng. J., 452(2023), art. No. 139336. doi: 10.1016/j.cej.2022.139336
|
[104] |
B. Wang, F.P. Cai, C.X. Chu, et al., Modification of the Ni-rich layered cathode material by Hf addition: Synergistic microstructural engineering and surface stabilization, ACS Appl. Mater. Interfaces, 16(2024), No. 10, p. 12599. doi: 10.1021/acsami.3c18865
|
[105] |
S.Q. Liu, B.Y. Wang, X. Zhang, S. Zhao, Z.H. Zhang, and H.J. Yu, Reviving the lithium-manganese-based layered oxide cathodes for lithium-ion batteries, Matter, 4(2021), No. 5, p. 1511. doi: 10.1016/j.matt.2021.02.023
|
[106] |
X. Li, W.J. Ge, K.K. Zhang, G.C. Peng, Y.X. Fu, and X.G. Ma, Comprehensive study of tantalum doping on morphology, structure, and electrochemical performance of Ni-rich cathode materials, Electrochim. Acta, 403(2022), art. No. 139653. doi: 10.1016/j.electacta.2021.139653
|
[107] |
C.X. Mei, F.H. Du, L. Wu, et al., Stabilization of crystal and interfacial structure of Ni-rich cathode material by vanadium-doping, J. Colloid Interface Sci., 617(2022), p. 193. doi: 10.1016/j.jcis.2022.03.004
|
[108] |
Z.P. Qiu, Y.L. Zhang, Z. Liu, Y. Gao, J.M. Liu, and Q.G. Zeng, Stabilizing Ni-rich LiNi0.92Co0.06Al0.02O2 cathodes by boracic polyanion and tungsten cation co-doping for high-energy lithium-ion batteries, ChemElectroChem, 7(2020), No. 18, p. 3811. doi: 10.1002/celc.202000927
|
[109] |
T. Sattar, S.H. Lee, B.S. Jin, and H.S. Kim, Influence of Mo addition on the structural and electrochemical performance of Ni-rich cathode material for lithium-ion batteries, Sci. Rep., 10(2020), No. 1, art. No. 8562. doi: 10.1038/s41598-020-64546-8
|
[110] |
A. Gomez-Martin, F. Reissig, L. Frankenstein, et al., Magnesium substitution in Ni-rich NMC layered cathodes for high-energy lithium ion batteries, Adv. Energy Mater., 12(2022), No. 8, art. No. 2103045. doi: 10.1002/aenm.202103045
|
[111] |
H.H. Sun, T.P. Pollard, O. Borodin, K. Xu, and J.L. Allen, Degradation of high nickel Li-ion cathode materials induced by exposure to fully-charged state and its mitigation, Adv. Energy Mater., 13(2023), No. 18, art. No. 2204360. doi: 10.1002/aenm.202204360
|
[112] |
G.T. Park, B. Namkoong, S.B. Kim, J. Liu, C.S. Yoon, and Y.K. Sun, Introducing high-valence elements into cobalt-free layered cathodes for practical lithium-ion batteries, Nat. Energy, 7(2022), p. 946. doi: 10.1038/s41560-022-01106-6
|
[113] |
X.Y. Zhang, P.P. Zhang, T.Y. Zeng, et al., Improving the structure stability of LiNi0.8Co0.15Al0.05O2 by double modification of tantalum surface coating and doping, ACS Appl. Energy Mater., 4(2021), No. 8, p. 8641. doi: 10.1021/acsaem.1c01811
|
[114] |
L.S. Li, Z. Zhang, S.H. Fu, and Z.Z. Liu, F127-assisted synthesis of LiNi0.5Co0.2Mn0.3O1.99F0.01 as a high rate and long lifespan cathode material for lithium-ion batteries, Appl. Surf. Sci., 476(2019), p. 1061. doi: 10.1016/j.apsusc.2019.01.160
|
[115] |
X.L. Liu, S. Wang, L. Wang, et al., Stabilizing the high-voltage cycle performance of LiNi0.8Co0.1Mn0.1O2 cathode material by Mg doping, J. Power Sources, 438(2019), art. No. 227017. doi: 10.1016/j.jpowsour.2019.227017
|
[116] |
Z.H. Cui, Q. Xie, and A. Manthiram, Zinc-doped high-nickel, low-cobalt layered oxide cathodes for high-energy-density lithium-ion batteries, ACS Appl. Mater. Interfaces, 13(2021), No. 13, p. 15324. doi: 10.1021/acsami.1c01824
|
[117] |
H. Gu, Y. Mu, S.T. Zhang, et al., Enhanced thermal safety and rate capability of nickel-rich cathodes via optimal Nb-doping strategy, Electrochim. Acta, 487(2024), art. No. 144216. doi: 10.1016/j.electacta.2024.144216
|
[118] |
N.Y. Park, G. Cho, S.B. Kim, and Y.K. Sun, Multifunctional doping strategy to develop high-performance Ni-rich cathode material, Adv. Energy Mater., 13(2023), No. 14, art. No. 2204291. doi: 10.1002/aenm.202204291
|
[119] |
H.H. Ryu, H.W. Lim, S.G. Lee, and Y.K. Sun, Optimization of molybdenum-doped Ni-rich layered cathodes for long-term cycling, Energy Storage Mater., 59(2023), art. No. 102771. doi: 10.1016/j.ensm.2023.102771
|
[120] |
R. Zhang, C.Y. Wang, P.C. Zou, et al., Compositionally complex doping for zero-strain zero-cobalt layered cathodes, Nature, 610(2022), No. 7930, p. 67. doi: 10.1038/s41586-022-05115-z
|
[121] |
B.K. Yu, Y.Q. Wang, J.Q. Li, et al., Recent advances on low-Co and Co-free high entropy layered oxide cathodes for lithium-ion batteries, Nanotechnology, 34(2023), No. 45, art. No. 452501. doi: 10.1088/1361-6528/acec4f
|
[122] |
J.B. Wang, Y.Y. Cui, Q.S. Wang, et al., Lithium containing layered high entropy oxide structures, Sci. Rep., 10(2020), No. 1, art. No. 18430. doi: 10.1038/s41598-020-75134-1
|
[123] |
J. Sturman, C.H. Yim, E.A. Baranova, and Y. Abu-Lebdeh, Communication—Design of LiNi0.2Mn0.2Co0.2Fe0.2Ti0.2O2 as a high-entropy cathode for lithium-ion batteries guided by machine learning, J. Electrochem. Soc., 168(2021), No. 5, art. No. 050541. doi: 10.1149/1945-7111/ac00f4
|
[124] |
K.D. Wang, K. Nishio, K. Horiba, et al., Synthesis of high-entropy layered oxide epitaxial thin films: LiCr1/6Mn1/6Fe1/6Co1/6Ni1/6Cu1/6O2, Cryst. Growth Des., 22(2022), No. 2, p. 1116. doi: 10.1021/acs.cgd.1c01076
|
[125] |
T. Kawaguchi, X. Bian, T. Hatakeyama, H.Y. Li, and T. Ichitsubo, Influences of enhanced entropy in layered rocksalt oxide cathodes for lithium-ion batteries, ACS Appl. Energy Mater., 5(2022), No. 4, p. 4369. doi: 10.1021/acsaem.1c03968
|
[126] |
J. Song, F.H. Ning, Y.X. Zuo, et al., Entropy stabilization strategy for enhancing the local structural adaptability of Li-rich cathode materials, Adv. Mater., 35(2023), No. 7, art. No. 2208726. doi: 10.1002/adma.202208726
|
[127] |
Z.Y. Lun, B. Ouyang, D.H. Kwon, et al., Cation-disordered rocksalt-type high-entropy cathodes for Li-ion batteries, Nat. Mater., 20(2021), No. 2, p. 214. doi: 10.1038/s41563-020-00816-0
|
[128] |
S.Y. Zhou, Y.X. Sun, T. Gao, J.H. Liao, S.X. Zhao, and G.Z. Cao, Enhanced Li+ diffusion and lattice oxygen stability by the high entropy effect in disordered-rocksalt cathodes, Angew. Chem. Int. Ed., 62(2023), No. 42, art. No. e202311930. doi: 10.1002/anie.202311930
|
[129] |
X.Y. Zhao and G. Ceder, Zero-strain cathode materials for Li-ion batteries, Joule, 6(2022), No. 12, p. 2683. doi: 10.1016/j.joule.2022.11.012
|
[130] |
X.Y. Zhao, Y.S. Tian, Z.Y. Lun, et al., Design principles for zero-strain Li-ion cathodes, Joule, 6(2022), No. 7, p. 1654. doi: 10.1016/j.joule.2022.05.018
|
[131] |
I. Konuma, D. Goonetilleke, N. Sharma, et al., A near dimensionally invariable high-capacity positive electrode material, Nat. Mater., 22(2023), No. 2, p. 225. doi: 10.1038/s41563-022-01421-z
|
[132] |
A. Bano, M. Noked, and D.T. Major, Theoretical insights into high-entropy Ni-rich layered oxide cathodes for low-strain Li-ion batteries, Chem. Mater., 35(2023), No. 20, p. 8426. doi: 10.1021/acs.chemmater.3c01182
|
[133] |
D.C. Chen, J. Ahn, and G.Y. Chen, An overview of cation-disordered lithium-excess rocksalt cathodes, ACS Energy Lett., 6(2021), No. 4, p. 1358.
|
[134] |
R.J. Clément, Z. Lun, and G. Ceder, Cation-disordered rocksalt transition metal oxides and oxyfluorides for high energy lithium-ion cathodes, Energy Environ. Sci., 13(2020), No. 2, p. 345. doi: 10.1039/C9EE02803J
|
[135] |
K. Zhou, Y.N. Li, Y. Ha, et al., A nearly zero-strain Li-rich rock-salt oxide with multielectron redox reactions as a cathode for Li-ion batteries, Chem. Mater., 34(2022), No. 21, p. 9711. doi: 10.1021/acs.chemmater.2c02519
|
[136] |
J. Lee, A. Urban, X. Li, D. Su, G. Hautier, and G. Ceder, Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries, Science, 343(2014), No. 6170, p. 519. doi: 10.1126/science.1246432
|
[137] |
M. Nakajima and N. Yabuuchi, Lithium-excess cation-disordered rocksalt-type oxide with nanoscale phase segregation: Li1.25Nb0.25V0.5O2, Chem. Mater., 29(2017), No. 16, p. 6927. doi: 10.1021/acs.chemmater.7b02343
|
[138] |
R.J. Qi, I. Konuma, B.D.L. Campéon, Y. Kaneda, M. Kondo, and N. Yabuuchi, Highly graphitic carbon coating on Li1.25Nb0.25V0.5O2 derived from a precursor with a perylene core for high-power battery applications, Chem. Mater., 34(2022), No. 4, p. 1946. doi: 10.1021/acs.chemmater.1c04426
|
[139] |
C. Zhan, T.P. Wu, J. Lu, and K. Amine, Dissolution, migration, and deposition of transition metal ions in Li-ion batteries exemplified by Mn-based cathodes–A critical review, Energy Environ. Sci., 11(2018), No. 2, p. 243. doi: 10.1039/C7EE03122J
|
[140] |
W.S. Li, Review—An unpredictable hazard in lithium-ion batteries from transition metal ions: Dissolution from cathodes, deposition on anodes and elimination strategies, J. Electrochem. Soc., 167(2020), No. 9, art. No. 090514. doi: 10.1149/1945-7111/ab847f
|
[141] |
G.J. Ross, J.F. Watts, M.P. Hill, and P. Morrissey, Surface modification of poly(vinylidene fluoride) by alkaline treatment 1. The degradation mechanism, Polymer, 41(2000), No. 5, p. 1685. doi: 10.1016/S0032-3861(99)00343-2
|
[142] |
Y. You, H. Celio, J.Y. Li, A. Dolocan, and A. Manthiram, Modified high-nickel cathodes with stable surface chemistry against ambient air for lithium-ion batteries, Angew. Chem. Int. Ed., 57(2018), No. 22, p. 6480. doi: 10.1002/anie.201801533
|
[143] |
M.J. Herzog, N. Gauquelin, D. Esken, J. Verbeeck, and J. Janek, Facile dry coating method of high-nickel cathode material by nanostructured fumed alumina (Al2O3) improving the performance of lithium-ion batteries, Energy Technol., 9(2021), No. 4, art. No. 2100028. doi: 10.1002/ente.202100028
|
[144] |
D.Z. Hu, Y.F. Su, L. Chen, et al., The mechanism of side reaction induced capacity fading of Ni-rich cathode materials for lithium ion batteries, J. Energy Chem., 58(2021), p. 1. doi: 10.1016/j.jechem.2020.09.031
|
[145] |
L.T. Dou, P. Hu, C.Q. Shang, et al., Enhanced electrochemical performance of LiNi0.8Co0.1Mn0.1O2 with SiO2 surface coating via homogeneous precipitation, ChemElectroChem, 8(2021), No. 22, p. 4321. doi: 10.1002/celc.202101230
|
[146] |
Y.Y. Li, X.F. Li, J.H. Hu, et al., ZnO interface modified LiNi0.6Co0.2Mn0.2O2 toward boosting lithium storage, Energy Environ. Mater., 3(2020), No. 4, p. 522. doi: 10.1002/eem2.12080
|
[147] |
Q.L. Fan, K.J. Lin, S.D. Yang, et al., Constructing effective TiO2 nano-coating for high-voltage Ni-rich cathode materials for lithium ion batteries by precise kinetic control, J. Power Sources, 477(2020), art. No. 228745. doi: 10.1016/j.jpowsour.2020.228745
|
[148] |
Y.R. Bak, Y. Chung, J.H. Ju, M.J. Hwang, Y. Lee, and K.S. Ryu, Structure and electrochemical performance of LiNi0.8Co0.15Al0.05O2 cathodes before and after treatment with Co3(PO4)2 or AlPO4 by in situ chemical method, J. New Mater. Electrochem. Syst., 14(2011), No. 4, p. 203. doi: 10.14447/jnmes.v14i4.90
|
[149] |
D.J. Lee, B. Scrosati, and Y.K. Sun, Ni3(PO4)2-coated Li[Ni0.8Co0.15Al0.05]O2 lithium battery electrode with improved cycling performance at 55°C, J. Power Sources, 196(2011), No. 18, p. 7742. doi: 10.1016/j.jpowsour.2011.04.007
|
[150] |
Y.Q. Chu, Y.B. Mu, L.F. Zou, et al., Thermodynamically stable dual-modified LiF&FeF3 layer empowering Ni-rich cathodes with superior cyclabilities, Adv. Mater., 35(2023), No. 21, art. No. 2212308. doi: 10.1002/adma.202212308
|
[151] |
G.R. Hu, X.Y. Qi, K.H. Hu, et al., A facile cathode design with a LiNi0.6Co0.2Mn0.2O2 core and an AlF3-activated Li1.2Ni0.2Mn0.6O2 shell for Li-ion batteries, Electrochim. Acta, 265(2018), p. 391. doi: 10.1016/j.electacta.2018.01.176
|
[152] |
K.S. Ryu, S.H. Lee, and Y.J. Park, Electrochemical properties of LiNi0.8Co0.16Al0.04O2 and surface modification with Co3(PO4)2 as cathode materials for lithium battery, Bull. Korean Chem. Soc., 29(2008), No. 9, p. 1737. doi: 10.5012/bkcs.2008.29.9.1737
|
[153] |
Z.K. Zhao, S. Chen, D.B. Mu, et al., Understanding the surface decoration on primary particles of nickel-rich layered LiNi0.6Co0.2Mn0.2O2 cathode material with lithium phosphate, J. Power Sources, 431(2019), p. 84. doi: 10.1016/j.jpowsour.2019.05.046
|
[154] |
Q.M. Gan, N. Qin, Z.Y. Wang, et al., Revealing mechanism of Li3PO4 coating suppressed surface oxygen release for commercial Ni-rich layered cathodes, ACS Appl. Energy Mater., 3(2020), No. 8, p. 7445. doi: 10.1021/acsaem.0c00859
|
[155] |
J.L. Fu, D.B. Mu, B.R. Wu, et al., Enhanced electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode at high cutoff voltage by modifying electrode/electrolyte interface with lithium metasilicate, Electrochim. Acta, 246(2017), p. 27. doi: 10.1016/j.electacta.2017.06.038
|
[156] |
D. Wang, X.H. Li, Z.X. Wang, et al., Multifunctional Li2O–2B2O3 coating for enhancing high voltage electrochemical performances and thermal stability of layered structured LiNi0.5Co0.2Mn0.3O2 cathode materials for lithium ion batteries, Electrochim. Acta, 174(2015), p. 1225. doi: 10.1016/j.electacta.2015.06.111
|
[157] |
C.C. Zhang, S.Y. Liu, J.M. Su, et al., Revealing the role of NH4VO3 treatment in Ni-rich cathode materials with improved electrochemical performance for rechargeable lithium-ion batteries, Nanoscale, 10(2018), No. 18, p. 8820. doi: 10.1039/C8NR01707G
|
[158] |
M.H. Park, M. Noh, S.H. Lee, et al., Flexible high-energy Li-ion batteries with fast-charging capability, Nano Lett., 14(2014), No. 7, p. 4083. doi: 10.1021/nl501597s
|
[159] |
K. Sahni, M. Ashuri, Q.R. He, et al., H3PO4 treatment to enhance the electrochemical properties of Li(Ni1/3Mn1/3Co1/3)O2 and Li(Ni0.5Mn0.3Co0.2)O2 cathodes, Electrochim. Acta, 301(2019), p. 8. doi: 10.1016/j.electacta.2019.01.153
|
[160] |
X.H. Xiong, D. Ding, Y.F. Bu, et al., Enhanced electrochemical properties of a LiNiO2-based cathode material by removing lithium residues with (NH4)2HPO4, J. Mater. Chem. A, 2(2014), No. 30, p. 11691. doi: 10.1039/C4TA01282H
|
[161] |
G. Kaur and B.D. Gates, Review-surface coatings for cathodes in lithium ion batteries: From crystal structures to electrochemical performance, J. Electrochem. Soc., 169(2022), No. 4, art. No. 043504. doi: 10.1149/1945-7111/ac60f3
|
[162] |
X.Y. Qu, H. Huang, T. Wan, et al., An integrated surface coating strategy to enhance the electrochemical performance of nickel-rich layered cathodes, Nano Energy, 91(2022), art. No. 106665. doi: 10.1016/j.nanoen.2021.106665
|
[163] |
L.F. Wang, G.C. Liu, R. Wang, et al., Regulating surface oxygen activity by perovskite-coating-stabilized ultrahigh-nickel layered oxide cathodes, Adv. Mater., 35(2023), No. 11, art. No. 2209483. doi: 10.1002/adma.202209483
|
[164] |
H. Sheng, X.H. Meng, D.D. Xiao, et al., An air-stable high-nickel cathode with reinforced electrochemical performance enabled by convertible amorphous Li2CO3 modification, Adv. Mater., 34(2022), No. 12, art. No. 2108947. doi: 10.1002/adma.202108947
|
[165] |
Y.B. Shen, X.Y. Zhang, L.C. Wang, et al., A universal multifunctional rare earth oxide coating to stabilize high-voltage lithium layered oxide cathodes, Energy Storage Mater., 56(2023), p. 155. doi: 10.1016/j.ensm.2023.01.015
|
[166] |
X.Y. Zheng, R.H. Yu, J. Sun, et al., Precursor-oriented ultrathin Zr-based gradient coating on Ni-riched cathodes, Nano Energy, 105(2023), art. No. 108000. doi: 10.1016/j.nanoen.2022.108000
|
[167] |
Z.H. Chen, Y. Qin, K. Amine, and Y.K. Sun, Role of surface coating on cathode materials for lithium-ion batteries, J. Mater. Chem., 20(2010), No. 36, p. 7606. doi: 10.1039/c0jm00154f
|
[168] |
J.H. Shim, Y.M. Kim, M. Park, J. Kim, and S.H. Lee, Reduced graphene oxide-wrapped nickel-rich cathode materials for lithium ion batteries, ACS Appl. Mater. Interfaces, 9(2017), No. 22, p. 18720. doi: 10.1021/acsami.7b02654
|
[169] |
Y. Yoon, S. Shin, and M.W. Shin, Fundamental understanding of the effect of a polyaniline coating layer on cation mixing and chemical states of LiNi0.9Co0.085Mn0.015O2 for Li-ion batteries, ACS Appl. Polym. Mater., 5(2023), No. 2, p. 1344. doi: 10.1021/acsapm.2c01872
|
[170] |
B.Z. You, Z.X. Wang, F. Shen, et al., Research progress of single-crystal nickel-rich cathode materials for lithium ion batteries, Small Meth., 5(2021), No. 8, art. No. 2100234. doi: 10.1002/smtd.202100234
|
[171] |
H. Huang, L.P. Zhang, H.Y. Tian, et al., Pulse high temperature sintering to prepare single-crystal high nickel oxide cathodes with enhanced electrochemical performance, Adv. Energy Mater., 13(2023), No. 3, art. No. 2203188. doi: 10.1002/aenm.202203188
|
[172] |
A.H. Ran, S.X. Chen, M. Cheng, et al., A single-crystal nickel-rich material as a highly stable cathode for lithium-ion batteries, J. Mater. Chem. A, 10(2022), No. 37, p. 19680. doi: 10.1039/D2TA01186G
|
[173] |
J.T. Hu, L.Z. Li, Y.J. Bi, et al., Locking oxygen in lattice: A quantifiable comparison of gas generation in polycrystalline and single crystal Ni-rich cathodes, Energy Storage Mater., 47(2022), p. 195. doi: 10.1016/j.ensm.2022.02.025
|
[174] |
X.B. Kong, Y.G. Zhang, J.Y. Li, et al., Single-crystal structure helps enhance the thermal performance of Ni-rich layered cathode materials for lithium-ion batteries, Chem. Eng. J., 434(2022), art. No. 134638. doi: 10.1016/j.cej.2022.134638
|
[175] |
A. Neubrand and J. Rödel, Gradient materials: An overview of a novel concept, Int. J. Mater. Res., 88(2021), No. 5, p. 358.
|
[176] |
P.Y. Hou, H.Z. Zhang, Z.Y. Zi, L.Q. Zhang, and X.J. Xu, Core–shell and concentration-gradient cathodes prepared via co-precipitation reaction for advanced lithium-ion batteries, J. Mater. Chem. A, 5(2017), No. 9, p. 4254. doi: 10.1039/C6TA10297B
|
[177] |
R. Lin, S.M. Bak, Y. Shin, et al., Hierarchical nickel valence gradient stabilizes high-nickel content layered cathode materials, Nat. Commun., 12(2021), No. 1, art. No. 2350. doi: 10.1038/s41467-021-22635-w
|
[178] |
A. Purwanto, C.S. Yudha, U. Ubaidillah, H. Widiyandari, T. Ogi, and H. Haerudin, NCA cathode material: Synthesis methods and performance enhancement efforts, Mater. Res. Express, 5(2018), No. 12, art. No. 122001. doi: 10.1088/2053-1591/aae167
|
[179] |
D. Aurbach, K. Gamolsky, B. Markovsky, Y. Gofer, M. Schmidt, and U. Heider, On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries, Electrochim. Acta, 47(2002), No. 9, p. 1423. doi: 10.1016/S0013-4686(01)00858-1
|
[180] |
R. Dugas, A. Ponrouch, G. Gachot, R. David, M.R. Palacin, and J.M. Tarascon, Na reactivity toward carbonate-based electrolytes: The effect of FEC as additive, J. Electrochem. Soc., 163(2016), No. 10, p. A2333. doi: 10.1149/2.0981610jes
|
[181] |
R. Sahore, A. Tornheim, C. Peebles, et al., Methodology for understanding interactions between electrolyte additives and cathodes: A case of the tris(2, 2, 2-trifluoroethyl)phosphite additive, J. Mater. Chem. A, 6(2018), No. 1, p. 198. doi: 10.1039/C7TA08289D
|
[182] |
A. Hofmann, M. Migeot, E. Thißen, et al., Electrolyte mixtures based on ethylene carbonate and dimethyl sulfone for Li-ion batteries with improved safety characteristics, ChemSusChem, 8(2015), No. 11, p. 1892. doi: 10.1002/cssc.201500263
|
[183] |
K. Beltrop, S. Klein, R. Nölle, et al., Triphenylphosphine oxide as highly effective electrolyte additive for graphite/NMC811 lithium ion cells, Chem. Mater., 30(2018), No. 8, p. 2726. doi: 10.1021/acs.chemmater.8b00413
|
[184] |
B.W. Deng, H. Wang, X. Li, et al., Effects of charge cutoff potential on an electrolyte additive for LiNi0.6Co0.2Mn0.2O2–mesocarbon microbead full cells, Energy Technol., 7(2019), No. 4, art. No. 1800981. doi: 10.1002/ente.201800981
|
[185] |
Z.Y. Luo, H. Zhang, L. Yu, D.H. Huang, and J.Q. Shen, Improving long-term cyclic performance of LiNi0.8Co0.15Al0.05O2 cathode by introducing a film forming additive, J. Electroanal. Chem., 833(2019), p. 520. doi: 10.1016/j.jelechem.2018.12.041
|
[186] |
H.Q. Pham, Y.H. Thi Tran, J. Han, and S.W. Song, Roles of nonflammable organic liquid electrolyte in stabilizing the interface of the LiNi0.8Co0.1Mn0.1O2 cathode at 4.5 V and improving the battery performance, J. Phys. Chem. C, 124(2020), No. 1, p. 175. doi: 10.1021/acs.jpcc.9b09960
|
[187] |
Y.M. Lee, K.M. Nam, E.H. Hwang, et al., Interfacial origin of performance improvement and fade for 4.6 V LiNi0.5Co0.2Mn0.3O2 battery cathodes, J. Phys. Chem. C, 118(2014), No. 20, p. 10631. doi: 10.1021/jp501670g
|
[188] |
Y. Han, S.H. Jung, H. Kwak, et al., Single- or poly-crystalline Ni-rich layered cathode, sulfide or halide solid electrolyte: Which will be the winners for all-solid-state batteries?, Adv. Energy Mater., 11(2021), No. 21, art. No. 2100126. doi: 10.1002/aenm.202100126
|
[189] |
W. Jiang, X.X. Zhu, R.Z. Huang, et al., Revealing the design principles of Ni-rich cathodes for all-solid-state batteries, Adv. Energy Mater., 12(2022), No. 13, art. No. 2103473. doi: 10.1002/aenm.202103473
|
[190] |
S.H. Jung, U.H. Kim, J.H. Kim, et al., Ni-rich layered cathode materials with electrochemo-mechanically compliant microstructures for all-solid-state Li batteries, Adv. Energy Mater., 10(2020), No. 6, art. No. 1903360. doi: 10.1002/aenm.201903360
|
[191] |
L.S. Li, H.H. Duan, J. Li, L. Zhang, Y.F. Deng, and G.H. Chen, Toward high performance all-solid-state lithium batteries with high-voltage cathode materials: Design strategies for solid electrolytes, cathode interfaces, and composite electrodes, Adv. Energy Mater., 11(2021), No. 28, art. No. 2003154. doi: 10.1002/aenm.202003154
|
[192] |
X.S. Liu, B.Z. Zheng, J. Zhao, et al., Electrochemo-mechanical effects on structural integrity of Ni-rich cathodes with different microstructures in all solid-state batteries, Adv. Energy Mater., 11(2021), No. 8, art. No. 2003583. doi: 10.1002/aenm.202003583
|
[193] |
Y. Ma, J.H. Teo, F. Walther, et al., Advanced nanoparticle coatings for stabilizing layered Ni-rich oxide cathodes in solid-state batteries, Adv. Funct. Mater., 32(2022), No. 23, art. No. 2111829. doi: 10.1002/adfm.202111829
|
[194] |
S.X. Deng, X. Li, Z.H. Ren, et al., Dual-functional interfaces for highly stable Ni-rich layered cathodes in sulfide all-solid-state batteries, Energy Storage Mater., 27(2020), p. 117. doi: 10.1016/j.ensm.2020.01.009
|