Cite this article as:

Yafei Kuang, Kun Tao, Bo Yang, Peng Tong, Yan Zhang, Zhigang Sun, Kewei Zhang, Dunhui Wang, Jifan Hu, and Liang Zuo, Giant reversible barocaloric effects with high thermal cycle stability in epoxy-bonded (MnCoGe)0.96(CuCoSn)0.04 composite, Int. J. Miner. Metall. Mater., 31(2024), No. 11, pp.2528-2534. https://dx.doi.org/10.1007/s12613-024-2952-2
Yafei Kuang, Kun Tao, Bo Yang, Peng Tong, Yan Zhang, Zhigang Sun, Kewei Zhang, Dunhui Wang, Jifan Hu, and Liang Zuo, Giant reversible barocaloric effects with high thermal cycle stability in epoxy-bonded (MnCoGe)0.96(CuCoSn)0.04 composite, Int. J. Miner. Metall. Mater., 31(2024), No. 11, pp.2528-2534. https://dx.doi.org/10.1007/s12613-024-2952-2
引用本文 PDF XML SpringerLink

环氧树脂粘结(MnCoGe)0.96(CuCoSn)0.04复合材料的巨大可逆压热效应和高循环稳定性

摘要: 近年来,新型固态制冷技术凭借其高效节能、环保、稳定可靠、振动小和噪音低等优势,有望替代传统的气体压缩制冷技术,从而备受关注。新型固态制冷技术的实现是基于“固态相变”合金的热效应。其中,六方MnMX基(M = Co或Ni,X=Si或Ge)合金已经可以表现出巨大的压热效应。然而,巨大的体积膨胀会导致铸态MnMX铸锭破碎成粉末,这不可避免地带来了力学性能下降和成型性恶化的难题。而且在循环施加和去除等静压力的过程中,晶粒碎裂会带来结构转变熵变的降低。在本文中,环氧树脂粘结的(MnCoGe)0.96(CuCoSn)0.04复合材料可以实现具有高热循环稳定性的巨大可逆压热效应。在360 MPa下,它可以在30 K的宽温区内,获得43.0 J·kg-1·K-1的巨大可逆等温压热熵变和15.6 K的可逆绝热温变,这主要归因于其由较大的−101 K·GPa-1的压力驱动相变温度的变化量和11.1 K的热滞共同作用的结果。将可逆绝热温变进行归一化后,比可逆绝热温变高达43 K·GPa-1,这在压热制冷材料领域(金属间化合物)处于非常高的数值。更重要的是,经60次热循环后,复合材料没有断裂,量热曲线吻合良好,表现出优异的热循环稳定性。

 

Giant reversible barocaloric effects with high thermal cycle stability in epoxy-bonded (MnCoGe)0.96(CuCoSn)0.04 composite

Abstract: Hexagonal MnMX-based (M = Co or Ni, X = Si or Ge) alloys exhibit giant reversible barocaloric effects. However, giant volume expansion would result in the as-cast MnMX ingots fragmenting into powders, and inevitably bring the deterioration of mechanical properties and formability. Grain fragmentation can bring degradation of structural transformation entropy change during cyclic application and removal of pressure. In this paper, giant reversible barocaloric effects with high thermal cycle stability can be achieved in the epoxy bonded (MnCoGe)0.96(CuCoSn)0.04 composite. Giant reversible isothermal entropy change of 43.0 J∙kg−1∙K−1 and adiabatic temperature change from barocaloric effects (∆TBCE) of 15.6 K can be obtained within a wide temperature span of 30 K at 360 MPa, which is mainly attributed to the integration of the change in the transition temperature driven by pressure of −101 K∙GPa−1 and suitable thermal hysteresis of 11.1 K. Further, the variation of reversible ∆TBCE against the applied hydrostatic pressure reaches up to 43 K∙GPa−1, which is at the highest level among the other reported giant barocaloric compounds. More importantly, after 60 thermal cycles, the composite does not break and the calorimetric curves coincide well, demonstrating good thermal cycle stability.

 

/

返回文章
返回