Cite this article as:

Yanting Wang, He Han, Huiyang Bian, Yanjun Li, and Zhichao Lou, Multi-interface structure design of bamboo-based carbon/Co/CoO composite electromagnetic wave absorber based on biomimetic honeycomb-shaped superstructure, Int. J. Miner. Metall. Mater.,(2025). https://dx.doi.org/10.1007/s12613-024-2956-y
Yanting Wang, He Han, Huiyang Bian, Yanjun Li, and Zhichao Lou, Multi-interface structure design of bamboo-based carbon/Co/CoO composite electromagnetic wave absorber based on biomimetic honeycomb-shaped superstructure, Int. J. Miner. Metall. Mater.,(2025). https://dx.doi.org/10.1007/s12613-024-2956-y
引用本文 PDF XML SpringerLink

基于仿生蜂窝结构的竹基碳/Co/CoO复合电磁波吸收体的多界面结构设计

摘要: 5G通信技术和智能电子电气设备的快速发展必然会导致电磁辐射污染。通过纳米结构设计和界面改性来丰富异质界面极化弛豫已被证明是获得高效电磁波吸收的有效策略。在这里,这项工作实现了一种创新的方法,该方法结合了仿生蜂窝超结构来约束由Co/CoO纳米粒子组成的分级多孔异质结构,以提高界面极化强度。该方法通过对竹子进行脱木素改性,有效控制了Co2+的吸收效率,并结合仿生碳基天然分级多孔结构,实现了纳米粒子的均匀分散,有利于非均相界面的深入构建。此外,高温热解带来的多相结构为材料提供了最佳的介电损耗和阻抗匹配。因此,所获得的竹基Co/CoO多相复合材料表现出优异的电磁波吸收性能,在15wt%的低负载下实现了-79 dB的优异反射损耗(RL)和4.12 GHz(6.84–10.96 GHz)的有效吸收带宽。其中,该材料的最佳雷达截面(RCS)降低值可达31.9 dB·m2。这项工作为微波吸收剂宏观设计的微观控制和综合优化提供了一种新方法,为生物质材料的高价值利用提供了新思路。

 

Multi-interface structure design of bamboo-based carbon/Co/CoO composite electromagnetic wave absorber based on biomimetic honeycomb-shaped superstructure

Abstract: The rapid development of 5G communication technology and smart electronic and electrical equipment will inevitably lead to electromagnetic radiation pollution. Enriching heterointerface polarization relaxation through nanostructure design and interface modification has proven to be an effective strategy to obtain efficient electromagnetic wave absorption. Here, this work implements an innovative method that combines biomimetic honeycomb superstructure to constrain hierarchical porous heterostructure composed of Co/CoO nanoparticles to improve the interfacial polarization intensity. The method effectively controlled the absorption efficiency of Co2+ through delignification modification of bamboo, and combined with the bionic carbon-based natural hierarchical porous structure to achieve uniform dispersion of nanoparticles, which is conducive to the in-depth construction of heterogeneous interfaces. In addition, the multiphase structure brought about by high-temperature pyrolysis provides the best dielectric loss and impedance matching for the material. Therefore, the obtained bamboo-based Co/CoO multiphase composite showed excellent electromagnetic wave absorption performance, achieving excellent reflection loss (RL) of –79 dB and effective absorption band width of 4.12 GHz (6.84–10.96 GHz) at low load of 15wt%. Among them, the material’s optimal radar cross-section (RCS) reduction value can reach 31.9 dB·m2. This work provides a new approach to the micro-control and comprehensive optimization of macro-design of microwave absorbers, and offers new ideas for the high-value utilization of biomass materials.

 

/

返回文章
返回