Cite this article as:

Junkang Chen, Yongyue Zhuang, Yanxin Qiao, Yu Zhang, Aihua Yuan, and Hu Zhou, Co/Co7Fe3 heterostructures with controllable alloying degree on carbon spheres as bifunctional electrocatalyst for rechargeable zinc–air batteries, Int. J. Miner. Metall. Mater., 32(2025), No. 2, pp.476-487. https://dx.doi.org/10.1007/s12613-024-2958-9
Junkang Chen, Yongyue Zhuang, Yanxin Qiao, Yu Zhang, Aihua Yuan, and Hu Zhou, Co/Co7Fe3 heterostructures with controllable alloying degree on carbon spheres as bifunctional electrocatalyst for rechargeable zinc–air batteries, Int. J. Miner. Metall. Mater., 32(2025), No. 2, pp.476-487. https://dx.doi.org/10.1007/s12613-024-2958-9
引用本文 PDF XML SpringerLink

碳球负载可控合金化程度的Co/Co7Fe3异质结构作为可充电锌空气电池的双功能电催化剂

摘要: 探索具有高效氧还原反应(ORR)和氧析出反应(OER)的非贵金属电催化剂对于开发可充电锌空气电池(ZAB)极为关键。本文采用控制合金化程度的策略制备了Co/Co7Fe3异质结构修饰的氮掺杂碳球(NCS)(CoFe@NCS)。通过控制合金化程度调变催化剂的物相组成,最佳样品CoFe0.08@NCS在碱性电解质中的ORR半波电位为0.80 V,在10 mA·cm-2时的OER过电位为283 mV。研究表明,分级多孔结构及高活性Co7Fe3合金与金属Co之间界面电子耦合作用是该材料表现出优异双功能电催化活性和耐久性的主要原因。将CoFe0.08@NCS材料用作可充电液态ZAB的空气电极催化剂时,电池显示出较高的功率密度(157 mW·cm-2)并在150 h内保持稳定的充放电电压,优于以贵金属为催化剂的电池性能。此外,所组装的固态柔性ZAB在不同弯曲条件下展现出稳定的器件性能。本论文工作推进了金属/合金基电催化剂在可再生能源转换技术中的应用。

 

Co/Co7Fe3 heterostructures with controllable alloying degree on carbon spheres as bifunctional electrocatalyst for rechargeable zinc–air batteries

Abstract: Exploring efficient and nonprecious metal electrocatalysts of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is crucial for developing rechargeable zinc–air batteries (ZABs). Herein, an alloying-degree control strategy was employed to fabricate nitrogen-doped carbon sphere (NCS) decorated with dual-phase Co/Co7Fe3 heterojunctions (CoFe@NCS). The phase composition of materials has been adjusted by controlling the alloying degree. The optimal CoFe0.08@NCS electrocatalyst displays a half-wave potential of 0.80 V for ORR and an overpotential of 283 mV at 10 mA·cm−2 for OER in an alkaline electrolyte. The intriguing bifunctional electrocatalytic activity and durability is attributed to the hierarchically porous structure and interfacial electron coupling of highly-active Co7Fe3 alloy and metallic Co species. When the CoFe0.08@NCS material is used as air–cathode catalyst of rechargeable liquid-state zinc–air battery (ZAB), the device shows a high peak power-density (157 mW·cm−2) and maintains a stable voltage gap over 150 h, outperforming those of the benchmark (Pt/C+RuO2)-based device. In particular, the as-fabricated solid-state flexible ZAB delivers a reliable compatibility under different bending conditions. Our work provides a promising strategy to develop metal/alloy-based electrocatalysts for the application in renewable energy conversion technologies.

 

/

返回文章
返回