Cite this article as:

Tingting Li, Jian Yang, Yinhui Zhang, Han Sun, Yanli Chen, and Yuqi Zhang, Effect of Al content on nanoprecipitates, austenite grain growth and toughness in coarse-grained heat-affected zones of Al–Ti–Ca deoxidized shipbuilding steels, Int. J. Miner. Metall. Mater., 32(2025), No. 4, pp.879-891. https://dx.doi.org/10.1007/s12613-024-2967-8
Tingting Li, Jian Yang, Yinhui Zhang, Han Sun, Yanli Chen, and Yuqi Zhang, Effect of Al content on nanoprecipitates, austenite grain growth and toughness in coarse-grained heat-affected zones of Al–Ti–Ca deoxidized shipbuilding steels, Int. J. Miner. Metall. Mater., 32(2025), No. 4, pp.879-891. https://dx.doi.org/10.1007/s12613-024-2967-8
引用本文 PDF XML SpringerLink

Al含量对Al–Ti–Ca脱氧船板钢粗晶热影响区纳米析出物、原奥氏体晶粒长大和冲击韧性的影响

摘要: 大线能量焊接技术因其显著提升的焊接效率,已在造船、建筑、机械制造等领域得到广泛应用。然而,随着焊接热输入的增加,粗晶热影响区(Coarse-grained heat-affected zone, CGHAZ)的峰值温度显著升高,导致该区域出现显微组织脆化、晶粒粗化及冲击韧性下降等问题。研究表明,Ca氧化物冶金技术是改善大线能量焊接CGHAZ冲击韧性的有效方法。近年来的研究表明,Ca氧化物冶金技术的效果与合金元素含量密切相关。本研究系统阐明了Al含量对Al–Ti–Ca脱氧船板钢大线能量焊接CGHAZ区域微观组织演变及力学性能的影响机制,为优化船板钢成分设计提供了重要的理论依据。本文通过制备不同Al含量的Al–Ti–Ca脱氧船板钢,结合焊接热模拟、高温共聚焦原位观察、碳膜复型及显微组织表征等实验手段,系统研究了不同Al含量船板钢焊接后CGHAZ区域的纳米析出相演变行为、生长行为及冲击韧性演变规律。研究结果表明,较高的Al含量能够显著提高CGHAZ的冲击韧性,这一现象主要与钢中纳米颗粒的演变行为及原奥氏体晶粒生长行为相关。具体而言,低Al钢中低熔点富Nb析出相的比例较高,在高温下对奥氏体晶界的钉扎作用显著减弱。此外,在焊接过程中,低Al钢中形成的γ-Al₂O₃相与Cu₂S和TiN之间表现出良好的晶格匹配性,促进了粗大γ-Al₂O₃–TiN–Cu₂S复合析出相的形成。这种复合析出相的形成进一步削弱了析出相对奥氏体晶界的钉扎作用,导致低Al钢中原奥氏体晶粒的异常长大。这种微观组织的不均匀性显著降低了低Al钢CGAHZ在–40°C的冲击韧性,使其从134 J(0.016 wt% Al)显著降低至54 J(0.006wt% Al)。

 

Effect of Al content on nanoprecipitates, austenite grain growth and toughness in coarse-grained heat-affected zones of Al–Ti–Ca deoxidized shipbuilding steels

Abstract: This work focuses on the influence of Al content on the precipitation of nanoprecipitates, growth of prior austenite grains (PAGs), and impact toughness in simulated coarse-grained heat-affected zones (CGHAZs) of two experimental shipbuilding steels after being subjected to high-heat input welding at 400 kJ·cm−1. The base metals (BMs) of both steels contained three types of precipitates: Type I: cubic (Ti,Nb)(C,N), Type II: precipitate with cubic (Ti,Nb)(C,N) core and Nb-rich cap, and Type III: ellipsoidal Nb-rich precipitate. In the BM of 60Al and 160Al steels, the number densities of the precipitates were 11.37 × 105 and 13.88 × 105 mm−2, respectively. The 60Al and 160Al steel contained 38.12% and 6.39% Type III precipitates, respectively. The difference in the content of Type III precipitates in the 60Al steel reduced the pinning effect at the elevated temperature of the CGHAZ, which facilitated the growth of PAGs. The average PAG sizes in the CGHAZ of the 60Al and 160Al steels were 189.73 and 174.7 µm, respectively. In the 60Al steel, the low lattice mismatch among Cu2S, TiN, and γ-Al2O3 facilitated the precipitation of Cu2S and TiN onto γ-Al2O3 during welding, which decreased the number density of independently precipitated (Ti,Nb)(C,N) particles but increased that of γ-Al2O3–TiN–Cu2S particles. Thus, abnormally large PAGs formed in the CGHAZ of the 60Al steel, and they reached a maximum size of 1 mm. These PAGs greatly reduced the microstructural homogeneity and consequently decreased the impact toughness from 134 (0.016wt% Al) to 54 J (0.006wt% Al) at −40°C.

 

/

返回文章
返回