Cite this article as:

Yahong Zhang, Yi Zhang, Huimin Liu, Dan Li, Yibo Wang, Chunchao Xu, Yuping Tian, and Hongjie Meng, TiN/Fe2N/C composite with stable and broadband high-temperature microwave absorption, Int. J. Miner. Metall. Mater., 31(2024), No. 11, pp.2508-2517. https://dx.doi.org/10.1007/s12613-024-2972-y
Yahong Zhang, Yi Zhang, Huimin Liu, Dan Li, Yibo Wang, Chunchao Xu, Yuping Tian, and Hongjie Meng, TiN/Fe2N/C composite with stable and broadband high-temperature microwave absorption, Int. J. Miner. Metall. Mater., 31(2024), No. 11, pp.2508-2517. https://dx.doi.org/10.1007/s12613-024-2972-y
引用本文 PDF XML SpringerLink

具有稳定且宽频高温微波吸收性能的TiN/Fe2N/C复合材料

摘要: 面对复杂多变的高温环境,电磁波吸波材料保持稳定高效的吸波性能是必不可少的。本文采用静电纺丝技术和随后的高温氮化工艺,制备了一系列TiN/Fe2N/C复合材料,并对高温吸波性能进行了详细的研究。在制备的复合材料中,TiN/Fe2N/C纤维互相搭接,构建了复杂且发达的导电网络,在电磁场中能够引起可观的导电损耗。与此同时,不同组分之间的非均质界面产生了显著的界面极化。此外,在氮化过程中产生的缺陷部位也会出现了偶极子极化现象。在稳定介电损耗和优异阻抗匹配的协同作用下,TiN/Fe2N/C复合材料在293~453 K的宽温度范围内表现出优异稳定的吸收性能,且在2.1 mm和373 K下,样品TiN/Fe2N/C-15的最小反射损耗高达−48.01 dB,有效吸收带宽可达3.64 GHz。这项工作为开发复杂多变高温条件下高效稳定的电磁波吸收材料提供了新的思路。

 

TiN/Fe2N/C composite with stable and broadband high-temperature microwave absorption

Abstract: Facing the complex variable high-temperature environment, electromagnetic wave (EMW) absorbing materials maintaining high stability and satisfying absorbing properties is essential. This study focused on the synthesis and EMW absorbing performance evaluation of TiN/Fe2N/C composite materials, which were prepared using electrostatic spinning followed by a high-temperature nitridation process. The TiN/Fe2N/C fibers constructed a well-developed conductive network that generates considerable conduction loss. The heterogeneous interfaces between different components generated a significant level of interfacial polarization. Thanks to the synergistic effect of stable dielectric loss and optimized impedance matching, the TiN/Fe2N/C composite materials demonstrated excellent and stable absorption performance across a wide temperature range (293–453 K). Moreover, TiN/Fe2N/C-15 achieved a minimum reflection loss (RL) of −48.01 dB and an effective absorption bandwidth (EAB) of 3.64 GHz at 2.1 mm and 373 K. This work provides new insights into the development of high-efficiency and stabile EMW absorbing materials under complex variable high-temperature conditions.

 

/

返回文章
返回