留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

图(7)

数据统计

分享

计量
  • 文章访问数:  112
  • HTML全文浏览量:  44
  • PDF下载量:  15
  • 被引次数: 0
Dejwikom Theprattanakorn, Thanayut Kaewmaraya,  and Supree Pinitsoontorn, Boosting thermoelectric efficiency of Ag2Se through cold sintering process with Ag nano-precipitate formation, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2973-x
Cite this article as:
Dejwikom Theprattanakorn, Thanayut Kaewmaraya,  and Supree Pinitsoontorn, Boosting thermoelectric efficiency of Ag2Se through cold sintering process with Ag nano-precipitate formation, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2973-x
引用本文 PDF XML SpringerLink

银纳米颗粒沉淀冷烧结工艺提高Ag2Se热电效率



  • 通讯作者:

    Supree Pinitsoontorn    E-mail: psupree@kku.ac.th

  • 硒化银(Ag2Se)是一种极具潜力的近室温热电(TE)材料。本研究提出了一种在较低温度(170°C)下,以AgNO3溶液为瞬态液体,通过冷烧结工艺(CSP)制备块状Ag2Se新方法并考察AgNO3对其微观结构和TE性能的影响。物相成分和微观结构分析结果表明:AgNO3的加入诱导Ag2Se基体中Ag纳米颗粒沉淀形成,该沉淀颗粒不影响正交相β-Ag2Se晶体结构,抑制了晶体的生长,导致晶体尺寸减小。含有银纳米沉淀颗粒样品具有高孔隙率和低堆积密度,电导率显著提高,塞贝克系数略有下降,平均功率因数较纯Ag2Se的1540 μW⋅m−1⋅K−2增加至1670 μW⋅m−1⋅K−2,但过量添加AgNO3对功率因数不利。此外,利用AgNO3通过CSP制备的Ag2Se由于晶体界面、孔隙和Ag纳米颗粒沉淀处的声子散射增强,其热导率被有效抑制。在CSP制造过程中,添加Ag质量分数0.5%的Ag2Se在300 K时达到了最高zT值(0.92),相较于不添加Ag的Ag2Se提高20%以上。本研究为定制块状Ag2Se的微观结构和提高室温TE性能提供了一种有效策略。
  •  

    Boosting thermoelectric efficiency of Ag2Se through cold sintering process with Ag nano-precipitate formation

    + Author Affiliations
    • Silver selenide (Ag2Se) stands out as a promising thermoelectric (TE) material, particularly for applications near room temperatures. This research presents a novel approach for the fabrication of bulk Ag2Se samples at a relatively low temperature (170°C) using the cold sintering process (CSP) with AgNO3 solution as a transient liquid agent. The effect of AgNO3 addition during CSP on the microstructure and TE properties was investigated. The results from phase, composition and microstructure analyses showed that the introduction of AgNO3 solution induced the formation of Ag nano-precipitates within the Ag2Se matrix. Although the nano-precipitates do not affect the phase and crystal structure of orthorhombic β-Ag2Se, they suppressed crystal growth, leading to reduced crystallite sizes. The samples containing Ag nano-precipitates also exhibited high porosity and low bulk density. Consequently, these effects contributed to significantly enhanced electrical conductivity and a slight decrease in the Seebeck coefficient when small Ag concentrations were incorporated. This resulted in an improved average power factor from ~1540 µW·m−1·K−2 for pure Ag2Se to ~1670 µW·m−1·K−2 for Ag2Se with additional Ag precipitates. However, excessive Ag addition had a detrimental effect on the power factor. Furthermore, thermal conductivity was effectively suppressed in Ag2Se fabricated using AgNO3-assisted CSP, attributed to enhanced phonon scattering at crystal interfaces, pores, and Ag nano-precipitates. The highest figure-of-merit (zT) of 0.92 at 300 K was achieved for the Ag2Se with 0.5wt% Ag during CSP fabrication, equivalent to >20% improvement compared to the controlled Ag2Se without extra Ag solution. Thus, the process outlined in this study presents an effective strategy to tailor the microstructure of bulk Ag2Se and enhance its TE performance at room temperature.
    • loading
    • Supplementary Information-s12613-024-2973-x.docx
    • [1]
      Y. Lyu, A.R.M. Siddique, S.A. Gadsden, and S. Mahmud, Experimental investigation of thermoelectric cooling for a new battery pack design in a copper holder, Results Eng., 10(2021), art. No. 100214. doi: 10.1016/j.rineng.2021.100214
      [2]
      D.L. Zhao and G. Tan, A review of thermoelectric cooling: Materials, modeling and applications, Appl. Therm. Eng., 66(2014), No. 1–2, p. 15.
      [3]
      M. Cellura, L.Q. Luu, F. Guarino, and S. Longo, A review on life cycle environmental impacts of emerging solar cells, Sci. Total Environ., 908(2024), art. No. 168019. doi: 10.1016/j.scitotenv.2023.168019
      [4]
      K.F. Yu, Y.J. Zhou, Y.L. Liu, et al., Near-room-temperature thermoelectric materials and their application prospects in geothermal power generation, Geomech. Geophys. Geo-Energy Geo-Resour., 6(2019), No. 1, art. No. 12.
      [5]
      Z.J. Han, J.W. Li, F. Jiang, et al., Room-temperature thermoelectric materials: Challenges and a new paradigm, J. Materiomics, 8(2022), No. 2, p. 427. doi: 10.1016/j.jmat.2021.07.004
      [6]
      G.J. Snyder and E.S. Toberer, Complex thermoelectric materials, Nat. Mater., 7(2008), p. 105. doi: 10.1038/nmat2090
      [7]
      A. Bugalia, V. Gupta, and N. Thakur, Strategies to enhance the performance of thermoelectric materials: A review, J. Renewable Sustainable Energy, 15(2023), No. 3, art. No. 032704. doi: 10.1063/5.0147000
      [8]
      K. Kurosaki, Y. Takagiwa and X. Shi, Thermoelectric Materials : Principles and Concepts for Enhanced Properties, De Gruyter, Berlin, 2020.
      [9]
      Z.L. Bu, X.Y. Zhang, Y.X. Hu, et al., A record thermoelectric efficiency in tellurium-free modules for low-grade waste heat recovery, Nat. Commun., 13(2022), No. 1, art. No. 237. doi: 10.1038/s41467-021-27916-y
      [10]
      A. Firth, B. Zhang, and A.D. Yang, Quantification of global waste heat and its environmental effects, Appl. Energy, 235(2019), p. 1314. doi: 10.1016/j.apenergy.2018.10.102
      [11]
      C. Forman, I.K. Muritala, R. Pardemann, and B. Meyer, Estimating the global waste heat potential, Renewable Sustainable Energy Rev., 57(2016), p. 1568. doi: 10.1016/j.rser.2015.12.192
      [12]
      T.Y. Cao, X.L. Shi, M. Li, et al., Advances in bismuth-telluride-based thermoelectric devices: Progress and challenges, eScience, 3(2023), No. 3, art. No. 100122. doi: 10.1016/j.esci.2023.100122
      [13]
      M. D’Angelo, C. Galassi, and N. Lecis, Thermoelectric materials and applications: A review, Energies, 16(2023), No. 17, art. No. 6409. doi: 10.3390/en16176409
      [14]
      M.W. Gaultois, T.D. Sparks, C.K.H. Borg, R. Seshadri, W.D. Bonificio, and D.R. Clarke, Data-driven review of thermoelectric materials: Performance and resource considerations, Chem. Mater., 25(2013), No. 15, p. 2911. doi: 10.1021/cm400893e
      [15]
      D. Beretta, N. Neophytou, J.M. Hodges, et al., Thermoelectrics: From history, a window to the future, Mater. Sci. Eng. R: Rep., 138(2019), art. No. 100501. doi: 10.1016/j.mser.2018.09.001
      [16]
      S.Y. Tee, D. Ponsford, C.L. Lay, et al., Thermoelectric silver-based chalcogenides, Adv. Sci., 9(2022), No. 36, art. No. 2204624. doi: 10.1002/advs.202204624
      [17]
      D.W. Yang, X.L. Su, F.C. Meng, et al., Facile room temperature solventless synthesis of high thermoelectric performance Ag2Se via a dissociative adsorption reaction, J. Mater. Chem. A, 5(2017), No. 44, p. 23243. doi: 10.1039/C7TA08726H
      [18]
      N. Kongsip, T. Kawemaraya, T. Kamwanna, and S. Pinitsoontorn, Enhancing thermoelectric properties of silver selenide through cold sintering process using aqua regia as a liquid medium, Next Materials, 3(2024), art. No. 100136. doi: 10.1016/j.nxmate.2024.100136
      [19]
      D. Palaporn, S. Pinitsoontorn, K. Kurosaki, and G.J. Snyder, Porous Ag2Se fabricated by a modified cold sintering process with the average zT around unity near room temperature, Adv. Mater. Technol., 9(2024), No. 1, art. No. 2301242. doi: 10.1002/admt.202301242
      [20]
      J. Park, M. Dylla, Y. Xia, M. Wood, G.J. Snyder, and A. Jain, When band convergence is not beneficial for thermoelectrics, Nat. Commun., 12(2021), art. No. 3425. doi: 10.1038/s41467-021-23839-w
      [21]
      P. Jood and M. Ohta, Temperature-dependent structural variation and Cu substitution in thermoelectric silver selenide, ACS Appl. Energy Mater., 3(2020), No. 3, p. 2160. doi: 10.1021/acsaem.9b02231
      [22]
      J. Chen, Q. Sun, D.Y. Bao, et al., Hierarchical structures advance thermoelectric properties of porous n-type β-Ag2Se, ACS Appl. Mater. Interfaces, 12(2020), No. 46, p. 51523. doi: 10.1021/acsami.0c15341
      [23]
      H.Y. Wang, X.F. Liu, B. Zhang, et al., General surfactant-free synthesis of binary silver chalcogenides with tuneable thermoelectric properties, Chem. Eng. J., 393(2020), art. No. 124763. doi: 10.1016/j.cej.2020.124763
      [24]
      F.F. Aliev, M.B. Jafarov, and V.I. Eminova, Thermoelectric figure of merit of Ag2Se with Ag and Se excess, Semiconductors, 43(2009), No. 8, p. 977. doi: 10.1134/S1063782609080028
      [25]
      H.Z. Duan, Y.L. Li, K.P. Zhao, P.F. Qiu, X. Shi, and L.D. Chen, Ultra-fast synthesis for Ag2Se and CuAgSe thermoelectric materials, JOM, 68(2016), No. 10, p. 2659. doi: 10.1007/s11837-016-1980-4
      [26]
      S.Y. Tee, X.Y. Tan, X. Wang, et al., Aqueous synthesis, doping, and processing of n-type Ag2Se for high thermoelectric performance at near-room-temperature, Inorg. Chem., 61(2022), No. 17, p. 6451. doi: 10.1021/acs.inorgchem.2c00060
      [27]
      D. Li, J.H. Zhang, J.M. Li, J. Zhang, and X.Y. Qin, High thermoelectric performance for an Ag2Se-based material prepared by a wet chemical method, Mater. Chem. Front., 4(2020), No. 3, p. 875. doi: 10.1039/C9QM00487D
      [28]
      B.Q. Feng, Y.R. Cheng, C.Y. Liu, et al., Ag interstitial inhibition and phonon scattering at the ZnSe nano-precipitates to enhance the thermoelectric performance of Ag2Se, ACS Appl. Energy Mater., 6(2023), No. 5, p. 2804. doi: 10.1021/acsaem.2c03704
      [29]
      H. Wu, X.L. Shi, J.G. Duan, Q.F. Liu, and Z.G. Chen, Advances in Ag2Se-based thermoelectrics from materials to applications, Energy Environ. Sci., 16(2023), No. 5, p. 1870. doi: 10.1039/D3EE00378G
      [30]
      T. Kleinhanns, F. Milillo, M. Calcabrini, et al., A route to high thermoelectric performance: Solution-based control of microstructure and composition in Ag2Se, Adv. Energy Mater., 14(2024), No. 22, art. No. 2400408. doi: 10.1002/aenm.202400408
      [31]
      R. Santhosh, S. Harish, R. Abinaya, et al., Enhanced thermoelectric performance of hot-pressed n-type Ag2Se nanostructures by controlling the intrinsic lattice defects, CrystEngComm, 25(2023), No. 22, p. 3317. doi: 10.1039/D3CE00066D
      [32]
      T. Day, F. Drymiotis, T.S. Zhang, et al., Evaluating the potential for high thermoelectric efficiency of silver selenide, J. Mater. Chem. C, 1(2013), No. 45, p. 7568. doi: 10.1039/c3tc31810a
      [33]
      J. Guo, H. Guo, A.L. Baker, et al., Cold sintering: A paradigm shift for processing and integration of ceramics, Angew. Chem. Int. Ed., 55(2016), No. 38, p. 11457. doi: 10.1002/anie.201605443
      [34]
      A. Ndayishimiye, M.Y. Sengul, T. Sada, et al., Roadmap for densification in cold sintering: Chemical pathways, Open Ceram., 2(2020), art. No. 100019. doi: 10.1016/j.oceram.2020.100019
      [35]
      B. Zhu, X.L. Su, S.C. Shu, et al., Cold-sintered Bi2Te3-based materials for engineering nanograined thermoelectrics, ACS Appl. Energy Mater., 5(2022), No. 2, p. 2002. doi: 10.1021/acsaem.1c03540
      [36]
      X. Lu, W. Lu, J. Gao, et al., Processing high-performance thermoelectric materials in a green way: A proof of concept in cold sintered PbTe0.94Se0.06, ACS Appl. Mater. Interfaces, 14(2022), No. 33, p. 37937. doi: 10.1021/acsami.2c09065
      [37]
      W. Lu, S. Wu, Q. Ding, et al., Cold sintering mediated engineering of polycrystalline SnSe with high thermoelectric efficiency, ACS Appl. Mater. Interfaces, 16(2024), No. 4, p. 4671. doi: 10.1021/acsami.3c15970
      [38]
      N. Chen, M.R. Scimeca, S.J. Paul, et al., High-performance thermoelectric silver selenide thin films cation exchanged from a copper selenide template, Nanoscale Adv., 2(2020), No. 1, p. 368. doi: 10.1039/C9NA00605B
      [39]
      M.C. Mehra and A.O. Gubeli, The complexing characteristics of insoluble selenides. 1. Silver selenide, Can. J. Chem., 48(1970), No. 22, p. 3491. doi: 10.1139/v70-584
      [40]
      H.Y. Tang, J.R. Zheng, J.P. Li, Q. Xu and H.C. Pan, Multicomponent heterojunction of AuAg2SePb3 (PO42 for plasmonic enhanced photoelectrochemical performance, Optoelectron. Adv. Mater. Rapid Commun., 11(2017), No. 11–12, p. 671.
      [41]
      D. Palaporn, K. Kurosaki, and S. Pinitsoontorn, Effect of sintering temperature on the thermoelectric properties of Ag2Se fabricated by spark plasma sintering with high compression, Adv. Energy Sustainability Res., 4(2023), No. 10, art. No. 2300082. doi: 10.1002/aesr.202300082
      [42]
      S. Chand and P. Sharma, Synthesis and characterization of Ag-chalcogenide nanoparticles for possible applications in photovoltaics, Mater. Sci. -Pol., 36(2018), No. 3, p. 375. doi: 10.2478/msp-2018-0064
      [43]
      S. Huang, T.R. Wei, H. Chen, et al., Thermoelectric Ag2Se: Imperfection, homogeneity, and reproducibility, ACS Appl. Mater. Interfaces, 13(2021), No. 50, p. 60192.
      [44]
      M. Kockert, D. Kojda, R. Mitdank, et al., Nanometrology: Absolute Seebeck coefficient of individual silver nanowires, Sci. Rep., 9(2019), art. No. 20265. doi: 10.1038/s41598-019-56602-9
      [45]
      Y.Z. Lei, W. Liu, X.Y. Zhou, et al., The electronic-thermal transport properties and the exploration of magneto-thermoelectric properties and the Nernst thermopower of Ag2(1+ x)Se, J. Solid State Chem., 288(2020), art. No. 121453. doi: 10.1016/j.jssc.2020.121453
      [46]
      X. Liang, C.G. Wang, and D. Jin, Influence of nonstoichiometry point defects on electronic thermal conductivity, Appl. Phys. Lett., 117(2020), No. 21, art. No. 213901. doi: 10.1063/5.0031353
      [47]
      Q. Gao, W. Wang, Y. Lu, et al., High power factor Ag/Ag2Se composite films for flexible thermoelectric generators, ACS Appl. Mater. Interfaces, 13(2021), No. 12, p. 14327. doi: 10.1021/acsami.1c02194
      [48]
      S.Y. Tee, D. Ponsford, X.Y. Tan, et al., Compositionally tuned hybridization of n-type Ag0 :  Ag2Se under ambient conditions towards excellent thermoelectric properties at room temperature, Mater. Chem. Front., 7(2023), No. 12, p. 2411. doi: 10.1039/D3QM00123G
      [49]
      M. Jin, J.S. Liang, P.F. Qiu, et al., Investigation on low-temperature thermoelectric properties of Ag2Se polycrystal fabricated by using zone-melting method, J. Phys. Chem. Lett., 12(2021), No. 34, p. 8246. doi: 10.1021/acs.jpclett.1c02139
      [50]
      Y.Z. Pei, A.D. LaLonde, H. Wang, and G.J. Snyder, Low effective mass leading to high thermoelectric performance, Energy Environ. Sci., 5(2012), No. 7, p. 7963. doi: 10.1039/c2ee21536e
      [51]
      H.X. Wang, H.Y. Hu, N. Man, et al., Band flattening and phonon-defect scattering in cubic SnSe–AgSbTe2 alloy for thermoelectric enhancement, Mater. Today Phys., 16(2021), art. No. 100298. doi: 10.1016/j.mtphys.2020.100298
      [52]
      R. Dalven and R. Gill, Energy gap in β-Ag2Se, Phys. Rev., 159(1967), No.3, p. 645. doi: 10.1103/PhysRev.159.645
      [53]
      H.F. Wang, W.G. Chu, D.W. Wang, et al., Low-temperature thermoelectric properties of β-Ag2Se synthesized by hydrothermal reaction, J. Electron. Mater., 40(2011), No. 5, p. 624. doi: 10.1007/s11664-010-1484-x
      [54]
      K.P. Zhao, P.F. Qiu, X. Shi, and L.D. Chen, Recent advances in liquid-like thermoelectric materials, Adv. Funct. Mater., 30(2020), No. 8, art. No. 1903867. doi: 10.1002/adfm.201903867
      [55]
      T. Tarachand, R. Venkatesh, and G.S. Okram, Enhanced thermoelectric performance of Ag2S nanoparticles by Ag-nanoinclusions, AIP Conf. Proc., 2100(2019), No. 1, art. No. 020126.
      [56]
      H.J. Wu, J. Carrete, Z.Y. Zhang, et al., Strong enhancement of phonon scattering through nanoscale grains in lead sulfide thermoelectrics, NPG Asia Mater., 6(2014), No. 6, art. No. e108. doi: 10.1038/am.2014.39

    Catalog


    • /

      返回文章
      返回