留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 11
Nov.  2024

图(15)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  1460
  • HTML全文浏览量:  138
  • PDF下载量:  56
  • 被引次数: 0
Xihao Li, Shuai Cao, and Erol Yilmaz, Microstructural evolution and strengthening mechanism of aligned steel fiber cement-based tail backfills exposed to electromagnetic induction, Int. J. Miner. Metall. Mater., 31(2024), No. 11, pp. 2390-2403. https://doi.org/10.1007/s12613-024-2985-6
Cite this article as:
Xihao Li, Shuai Cao, and Erol Yilmaz, Microstructural evolution and strengthening mechanism of aligned steel fiber cement-based tail backfills exposed to electromagnetic induction, Int. J. Miner. Metall. Mater., 31(2024), No. 11, pp. 2390-2403. https://doi.org/10.1007/s12613-024-2985-6
引用本文 PDF XML SpringerLink
研究论文

电磁感应作用下定向钢纤维尾砂胶结充填体的微观结构演变和强化机制


  • 通讯作者:

    曹帅    E-mail: sandy_cao@ustb.edu.cn

    Erol Yilmaz    E-mail: erol.yilmaz@erdogan.edu.tr

文章亮点

  • (1) 在单轴抗压试验中考虑了钢纤维尾砂胶结充填体的电磁感应强度效应
  • (2) 纤维的定向分布对提高钢纤维尾砂胶结充填体的抗压强度有显著影响
  • (3) 钢纤维的存在及其定向分布能很好地抑制裂纹的发展
  • 尾砂胶结充填不仅能提高采矿安全性,减少地表环境污染,而且能回收作为矿柱保留的矿石,从而提高资源利用率。在尾砂胶结充填体中掺入钢纤维等添加物,可以提高其强度,尤其是相邻两个矿房开采时,可以提高采场结构的稳定性。本文考虑钢纤维掺量和电磁感应强度效应,对钢纤维尾砂胶结充填体进行了微观结构和强度测试。实验结果表明:钢纤维掺量及其分布方向对提高填料强度有重要影响。当磁感应强度为 3×10−4 T时,纤维体积比为 2.0%时,单轴抗压强度达到 5.73 MPa。试件裂纹的扩展主要从试件的上部开始,并随着载荷的增加逐渐向下扩展,直至发生破坏,钢纤维的掺入及其定向分布延缓了裂纹的发展。当钢纤维体积比为 2.0%时,钢纤维尾砂胶结充填体表现出优异的延性特性。除此之外,当钢纤维掺量和磁感应强度增加时,充填体达到破坏所需的能量也会增加。本研究所得结论为钢纤维作为充填添加物以提高尾砂胶结充填体强度提供了理论参考。
  • Research Article

    Microstructural evolution and strengthening mechanism of aligned steel fiber cement-based tail backfills exposed to electromagnetic induction

    + Author Affiliations
    • Cemented tailings backfill (CTB) not only boosts mining safety and cuts surface environmental pollution but also recovers ores previously retained as pillars, thereby improving resource utilization. The use of alternative reinforcing products, such as steel fiber (SF), has continuously strengthened CTB into SFCTB. This approach prevents strength decreases over time and reinforces its long-term durability, especially when mining ore in adjacent underground stopes. In this study, various microstructure and strength tests were performed on SFCTB, considering steel fiber ratio and electromagnetic induction strength effects. Lab findings show that combining steel fibers and their distribution dominantly influences the improvement of the fill’s strength. Fill’s strength rises by fiber insertion and has an evident correlation with fiber insertion and magnetic induction strength. When magnetic induction strength is 3 × 10−4 T, peak uniaxial compressive stress reaches 5.73 MPa for a fiber ratio of 2.0vol%. The cracks’ expansion mainly started from the specimen’s upper part, which steadily expanded downward by increasing the load until damage occurred. The doping of steel fiber and its directional distribution delayed crack development. When the doping of steel fiber was 2.0vol%, SFCTBs showed excellent ductility characteristics. The energy required for fills to reach destruction increases when steel-fiber insertion and magnetic induction strength increase. This study provides notional references for steel fibers as underground filling additives to enhance the fill’s durability in the course of mining operations.
    • loading
    • [1]
      L.H. Yang, J.C. Li, H.B. Liu, et al., Systematic review of mixing technology for recycling waste tailings as cemented paste backfill in mines in China, Int. J. Miner. Metall. Mater., 30(2023), No. 8, p. 1430. doi: 10.1007/s12613-023-2609-6
      [2]
      A. Fernández, P. Segarra, J.A. Sanchidrián, and R. Navarro, Ore/waste identification in underground mining through geochemical calibration of drilling data using machine learning techniques, Ore Geol. Rev., 168(2024), art. No. 106045. doi: 10.1016/j.oregeorev.2024.106045
      [3]
      D.W. Li, A.O. Ramos, A. Bah, and F.H. Li, Valorization of lead-zinc mine tailing waste through geopolymerization: Synthesis, mechanical, and microstructural properties, J. Environ. Manage., 349(2024), art. No. 119501. doi: 10.1016/j.jenvman.2023.119501
      [4]
      Y. Xu, Y.J. Han, G.Q. Zhao, and S.Y. Meng, Enhancing geotechnical reinforcement: Exploring molybdenum tailings and basalt fibre-modified composites for sustainable construction, Constr. Build. Mater., 411(2024), art. No. 134452. doi: 10.1016/j.conbuildmat.2023.134452
      [5]
      H. Qin, S. Cao, and E. Yilmaz, Mechanical, energy evolution, damage and microstructural behavior of cemented tailings-rock fill considering rock content and size effects, Constr. Build. Mater., 411(2024), art. No. 134449. doi: 10.1016/j.conbuildmat.2023.134449
      [6]
      Y.K. Liu, Y.M. Wang, and Q.S. Chen, Using cemented paste backfill to tackle the phosphogypsum stockpile in China: A down-to-earth technology with new vitalities in pollutant retention and CO2 abatement, Int. J. Miner. Metall. Mater., 31(2024), No. 7, p. 1480. doi: 10.1007/s12613-023-2799-y
      [7]
      S. Cao, G.L. Xue, E. Yilmaz, and Z.Y. Yin, Assessment of rheological and sedimentation characteristics of fresh cemented tailings backfill slurry, Int. J. Min. Reclam. Environ., 35(2021), No. 5, p. 319. doi: 10.1080/17480930.2020.1826092
      [8]
      G.L. Xue, E. Yilmaz, and Y.D. Wang, Progress and prospects of mining with backfill in metal mines in China, Int. J. Miner. Metall. Mater., 30(2023), No. 8, p. 1455. doi: 10.1007/s12613-023-2663-0
      [9]
      A.X. Wu, Z.Q. Wang, Z.E. Ruan, R. Bürger, S.Y. Wang, and Y. Mo, Rheological properties and concentration evolution of thickened tailings under the coupling effect of compression and shear, Int. J. Miner. Metall. Mater., 31(2024), No. 5, p. 862. doi: 10.1007/s12613-024-2832-9
      [10]
      R.G. Gao, W.J. Wang, X. Xiong, J.J. Li, and C. Xu, Effect of curing temperature on the mechanical properties and pore structure of cemented backfill materials with waste rock-tailings, Constr. Build. Mater., 409(2023), art. No. 133850. doi: 10.1016/j.conbuildmat.2023.133850
      [11]
      J. Wang, Q.J. Yu, Z.Z. Xiang, J.X. Fu, L.M. Wang, and W.D. Song, Influence of basalt fiber on pore structure, mechanical performance and damage evolution of cemented tailings backfill, J. Mater. Res. Technol., 27(2023), p. 5227. doi: 10.1016/j.jmrt.2023.10.240
      [12]
      J.J. Li, S. Cao, and E. Yilmaz, Characterization of macro mechanical properties and microstructures of cement-based composites prepared from fly ash, gypsum and steel slag, Minerals, 12(2021), No. 1, art. No. 6. doi: 10.3390/min12010006
      [13]
      Q.L. Li, B.W. Wang, L. Yang, et al., Synthesis of cemented paste backfill by reutilizing multiple industrial waste residues and ultrafine tailings: Strength, microstructure, and GA-GPR prediction modeling, Powder Technol., 434(2024), art. No. 119337. doi: 10.1016/j.powtec.2023.119337
      [14]
      S.C. Wu, T.C. Sun, J. Kou, H. Li, and E.X. Gao, Green and efficient recovery of poly metals from converter sludge through reduction roasting and preparation of backfill from tailings, Chem. Eng. J., 479(2024), art. No. 147582. doi: 10.1016/j.cej.2023.147582
      [15]
      K.Z. Xia, C.X. Chen, X.M. Liu, Y. Wang, X.T. Liu, and J.H. Yuan, Estimating shear strength of high-level pillars supported with cemented backfilling using the Hoek–Brown strength criterion, J. Rock Mech. Geotech. Eng., 16(2024), No. 2, p. 454. doi: 10.1016/j.jrmge.2023.06.004
      [16]
      T. Kasap, E. Yilmaz, and M. Sari, Physico-chemical and micro-structural behavior of cemented mine backfill: Effect of pH in dam tailings, J. Environ. Manage., 314(2022), art. No. 115034. doi: 10.1016/j.jenvman.2022.115034
      [17]
      W.J. Liu, Z.X. Liu, S. Xiong, and M. Wang, Comparative prediction performance of the strength of a new type of Ti tailings cemented backfilling body using PSO-RF, SSA-RF, and WOA-RF models, Case Stud. Constr. Mater., 20(2024), art. No. e02766.
      [18]
      Z.Q. Huang, S. Cao, and E. Yilmaz, Microstructure and mechanical behavior of cemented gold/tungsten mine tailings-crushed rock backfill: Effects of rock gradation and content, J. Environ. Manage., 339(2023), art. No. 117897. doi: 10.1016/j.jenvman.2023.117897
      [19]
      J.J. Li, S. Cao, and E. Yilmaz, Reinforcing effects of polypropylene on energy absorption and fracturing of cement-based tailings backfill under impact loading, Int. J. Miner. Metall. Mater., 31(2024), No. 4, p. 650. doi: 10.1007/s12613-023-2806-3
      [20]
      H.B. Liu and M. Fall, Testing the properties of cemented tailings backfill under multiaxial compressive loading, Constr. Build. Mater., 421(2024), art. No. 135682. doi: 10.1016/j.conbuildmat.2024.135682
      [21]
      X. Zhang, X.L. Xue, D.X. Ding, P.C. Sun, J.L. Li, and Y. He, A study of the mechanical properties, environmental effect, and microscopic mechanism of phosphorus slag-based uranium tailings backfilling materials, J. Cleaner Prod., 446(2024), art. No. 141306. doi: 10.1016/j.jclepro.2024.141306
      [22]
      S.X. Zou, S. Cao, and E. Yilmaz, Enhancing flexural property and mesoscopic mechanism of cementitious tailings backfill fabricated with 3D-printed polymers, Constr. Build. Mater., 414(2024), art. No. 135009. doi: 10.1016/j.conbuildmat.2024.135009
      [23]
      X.P. Song, Y.C. Huang, S. Wang, H.G. Yu, and Y.X. Hao, Macro-mesoscopic mechanical properties and damage progression of cemented tailings backfill under cyclic static load disturbance, Compos. Struct., 322(2023), art. No. 117433. doi: 10.1016/j.compstruct.2023.117433
      [24]
      Y.Y. Wang, Z.Q. Yu, and H.W. Wang, Experimental investigation on some performance of rubber fiber modified cemented paste backfill, Constr. Build. Mater., 271(2021), art. No. 121586. doi: 10.1016/j.conbuildmat.2020.121586
      [25]
      A.A. Wang, S. Cao, and E. Yilmaz, Quantitative analysis of pore characteristics of nanocellulose reinforced cementitious tailings fills using 3D reconstruction of CT images, J. Mater. Res. Technol., 26(2023), p. 1428. doi: 10.1016/j.jmrt.2023.08.004
      [26]
      B. Zhang, K.Q. Li, R.J. Cai, H.B. Liu, Y.F. Hu, and B. Han, Properties of modified superfine tailings cemented paste backfill: Effects of mixing time and Al2O3 dosage, Constr. Build. Mater., 417(2024), art. No. 135365. doi: 10.1016/j.conbuildmat.2024.135365
      [27]
      J.J. Li, S. Cao, and W.D. Song, Flexural behavior of cementitious backfill composites reinforced by various 3D printed polymeric lattices, Compos. Struct., 323(2023), art. No. 117489. doi: 10.1016/j.compstruct.2023.117489
      [28]
      M. Chen, H. Zhong, H. Wang, and M.Z. Zhang, Behaviour of recycled tyre polymer fibre reinforced concrete under dynamic splitting tension, Cem. Concr. Compos., 114(2020), art. No. 103764. doi: 10.1016/j.cemconcomp.2020.103764
      [29]
      S.Z. Zou, W.H. Guo, S. Wang, Y.T. Gao, L.Y. Qian, and Y. Zhou, Investigation of the dynamic mechanical properties and damage mechanisms of fiber-reinforced cemented tailing backfill under triaxial split-Hopkinson pressure bar testing, J. Mater. Res. Technol., 27(2023), p. 105. doi: 10.1016/j.jmrt.2023.09.236
      [30]
      X.H. Li, S. Cao, and E. Yilmaz, Effect of magnetic induction intensity and steel fiber rate on strength improvement of cementitious filling composites, Constr. Build. Mater., 428(2024), art. No. 136417. doi: 10.1016/j.conbuildmat.2024.136417
      [31]
      K. Zhao, Y.M. Lai, Z.W. He, et al., Study on energy dissipation and acoustic emission characteristics of fiber tailings cemented backfill with different ash-sand ratios, Process Saf. Environ. Prot., 174(2023), p. 983. doi: 10.1016/j.psep.2023.04.038
      [32]
      L. Cui and A. McAdie, Experimental study on evolutive fracture behavior and properties of sulfate-rich fiber-reinforced cemented paste backfill under pure mode-I, mode-II, and mode-III loadings, Int. J. Rock Mech. Min. Sci., 169(2023), art. No. 105434. doi: 10.1016/j.ijrmms.2023.105434
      [33]
      G.L. Xue, E. Yilmaz, G.R. Feng, and S. Cao, Bending behavior and failure mode of cemented tailings backfill composites incorporating different fibers for sustainable construction, Constr. Build. Mater., 289(2021), art. No. 123163. doi: 10.1016/j.conbuildmat.2021.123163
      [34]
      G.L. Xue, E. Yilmaz, W.D. Song, and S. Cao, Mechanical, flexural and microstructural properties of cement-tailings matrix composites: Effects of fiber type and dosage, Composites Part B, 172(2019), p. 131. doi: 10.1016/j.compositesb.2019.05.039
      [35]
      Z.Q. Huang, S. Cao, and E. Yilmaz, Investigation on the flexural strength, failure pattern and microstructural characteristics of combined fibers reinforced cemented tailings backfill, Constr. Build. Mater., 300(2021), art. No. 124005. doi: 10.1016/j.conbuildmat.2021.124005
      [36]
      S. Wang, X.P. Song, M.L. Wei, et al., Strength characteristics and microstructure evolution of cemented tailings backfill with rice straw ash as an alternative binder, Constr. Build. Mater., 297(2021), art. No. 123780. doi: 10.1016/j.conbuildmat.2021.123780
      [37]
      Z.B. Guo, J.P. Qiu, A. Kirichek, H. Zhou, C. Liu, and L. Yang, Recycling waste tyre polymer for production of fibre reinforced cemented tailings backfill in green mining, Sci. Total Environ., 908(2024), art. No. 168320. doi: 10.1016/j.scitotenv.2023.168320
      [38]
      S-T. Kang and J-K. Kim, The relation between fiber orientation and tensile behavior in an ultra high performance fiber reinforced cementitious composites (UHPFRCC), Cem. Concr. Res., 41 (2011), No. 10, p.1001. doi: 10.1016/j.cemconres.2011.05.009
      [39]
      M.M. Al Rifai, K.S. Sikora, and M.N.S. Hadi, Magnetic alignment of micro steel fibers embedded in self-compacting concrete, Constr. Build. Mater., 412(2024), art. No. 134796. doi: 10.1016/j.conbuildmat.2023.134796
      [40]
      H. Zhang, S. Cao, and E. Yilmaz, Influence of 3D-printed polymer structures on dynamic splitting and crack propagation behavior of cementitious tailings backfill, Constr. Build. Mater., 343(2022), art. No. 128137. doi: 10.1016/j.conbuildmat.2022.128137
      [41]
      Y.A. Li, W.H. Zhang, G.W. Sun, et al., A new orientational molding method for ultra-high performance concrete with high content of steel fiber and investigation on its flexure and axial tensile properties, Constr. Build. Mater., 400(2023), art. No. 132755. doi: 10.1016/j.conbuildmat.2023.132755
      [42]
      M.J.H. Wijffels, R.J.M. Wolfs, A.S.J. Suiker, and T.A.M. Salet, Magnetic orientation of steel fibres in self-compacting concrete beams: Effect on failure behaviour, Cem. Concr. Compos., 80(2017), p. 342. doi: 10.1016/j.cemconcomp.2017.04.005
      [43]
      X.H. Zhang, F.B. He, J. Chen, C.Q. Yang, and F. Xu, Orientation of steel fibers in concrete attracted by magnetized rebar and its effects on bond behavior, Cem. Concr. Compos., 138(2023), art. No. 104977. doi: 10.1016/j.cemconcomp.2023.104977
      [44]
      Y.X. Zheng, X.M. Lv, S.W. Hu, J.B. Zhuo, C. Wan, and J.Q. Liu, Mechanical properties and durability of steel fiber reinforced concrete: A review, J. Build. Eng., 82(2024), art. No. 108025. doi: 10.1016/j.jobe.2023.108025
      [45]
      S.Q. Meng, C.J. Jiao, X.W. Ouyang, Y.F. Niu, and J.Y. Fu, Effect of steel fiber-volume fraction and distribution on flexural behavior of Ultra-high performance fiber reinforced concrete by digital image correlation technique, Constr. Build. Mater., 320(2022), art. No. 126281. doi: 10.1016/j.conbuildmat.2021.126281
      [46]
      H. Zhang, Y.J. Huang, M. Lin, and Z.J. Yang, Effects of fibre orientation on tensile properties of ultra high performance fibre reinforced concrete based on meso-scale Monte Carlo simulations, Compos. Struct., 287(2022), art. No. 115331. doi: 10.1016/j.compstruct.2022.115331
      [47]
      H.H. Huang, X.J. Gao, L.S. Li, and H. Wang, Improvement effect of steel fiber orientation control on mechanical performance of UHPC, Constr. Build. Mater., 188(2018), p. 709. doi: 10.1016/j.conbuildmat.2018.08.146
      [48]
      F. Javahershenas, M.S. Gilani, and M. Hajforoush, Effect of magnetic field exposure time on mechanical and microstructure properties of steel fiber-reinforced concrete (SFRC), J. Build. Eng., 35(2021), art. No. 101975. doi: 10.1016/j.jobe.2020.101975
      [49]
      D.Y. Yoo, S.T. Kang, N. Banthia, and Y.S. Yoon, Nonlinear finite element analysis of ultra-high-performance fiber-reinforced concrete beams, Int. J. Damage Mech., 26(2017), No. 5, p. 735. doi: 10.1177/1056789515612559
      [50]
      L.B. Qing, H.L. Sun, Y.B. Zhang, R. Mu, and M.D. Bi, Research progress on aligned fiber reinforced cement-based composites, Constr. Build. Mater., 363(2023), art. No. 129578. doi: 10.1016/j.conbuildmat.2022.129578
      [51]
      H. Li, L. Li, J. Zhou, R. Mu, and M.F. Xu, Influence of fiber orientation on the microstructures of interfacial transition zones and pull-out behavior of steel fiber in cementitious composites, Cem. Concr. Compos., 128(2022), art. No. 104459. doi: 10.1016/j.cemconcomp.2022.104459
      [52]
      R. Mu, J. Chen, X.S. Chen, C.R. Diao, X.W. Wang, and L.B. Qing, Effect of the orientation of steel fiber on the strength of ultra-high-performance concrete (UHPC), Constr. Build. Mater., 406(2023), art. No. 133431. doi: 10.1016/j.conbuildmat.2023.133431
      [53]
      R. Mu, C.R. Diao, H.Q. Liu, et al., Design, preparation and mechanical properties of full-field aligned steel fiber reinforced cementitious composite, Constr. Build. Mater., 272(2021), art. No. 121631. doi: 10.1016/j.conbuildmat.2020.121631
      [54]
      L. Ke, L.M. Liang, Z. Feng, C.X. Li, J.L. Zhou, and Y.L. Li, Bond performance of CFRP bars embedded in UHPFRC incorporating orientation and content of steel fibers, J. Build. Eng., 73(2023), art. No. 106827. doi: 10.1016/j.jobe.2023.106827
      [55]
      G.D. Cao, Z.J. Li, S.Q. Jiang, et al., Experimental analysis and numerical simulation of flow behavior of fresh steel fibre reinforced concrete in magnetic field, Constr. Build. Mater., 347(2022), art. No. 128505. doi: 10.1016/j.conbuildmat.2022.128505
      [56]
      Y.Q. Hou, S.H. Yin, X. Chen, M.Z. Zhang, and S.X. Yang, Study on characteristic stress and energy damage evolution mechanism of cemented tailings backfill under uniaxial compression, Constr. Build. Mater., 301(2021), art. No. 124333. doi: 10.1016/j.conbuildmat.2021.124333
      [57]
      X.P. Song, J.B. Li, S. Wang, et al., Study of mechanical behavior and cracking mechanism of prefabricated fracture cemented paste backfill under different loading rates from the perspective of energy evolution, Constr. Build. Mater., 361(2022), art. No. 129737. doi: 10.1016/j.conbuildmat.2022.129737
      [58]
      C.L. Wang, G.Y. Du, E.B. Li, X. Sun, and Y. Pan, Evolution of strength parameters and energy dissipation of Beishan deep granite under conventional triaxial compression, Chin J Rock Mech. Eng., 40(2021), No. 11, p. 2238.
      [59]
      K. Zhao, X. Yu, Y. Zhou, Q. Wang, J.Q. Wang, and J.L. Hao, Energy evolution of brittle granite under different loading rates, Int. J. Rock Mech. Min. Sci., 132(2020), art. No. 104392. doi: 10.1016/j.ijrmms.2020.104392
      [60]
      B.X. Yan, H.W. Jia, E. Yilmaz, X.P. Lai, P.F. Shan, and C. Hou, Numerical study on microscale and macroscale strength behaviors of hardening cemented paste backfill, Constr. Build. Mater., 321(2022), art. No. 126327. doi: 10.1016/j.conbuildmat.2022.126327
      [61]
      P. Yan, B. Chen, M.Z. Zhu, and X.R. Meng, Study on mechanical properties and microstructure of green ultra-high performance concrete prepared by recycling waste glass powder, J. Build. Eng., 82(2024), art. No. 108206. doi: 10.1016/j.jobe.2023.108206

    Catalog


    • /

      返回文章
      返回