Cite this article as:

Zhenyang Yu, Changqi Duan, Qi Sun, Jinhu Ma, Yifang Zhang, Mengmeng Zhang, Delin Zhang, Zhijia Zhang, Zhiyan Jia, and Yong Jiang, High-yield carbon nanofibers derived from nanoporous Cu catalyst alloyed with Ni for sodium storage with high cycling stability, Int. J. Miner. Metall. Mater.,(2025). https://dx.doi.org/10.1007/s12613-024-2987-4
Zhenyang Yu, Changqi Duan, Qi Sun, Jinhu Ma, Yifang Zhang, Mengmeng Zhang, Delin Zhang, Zhijia Zhang, Zhiyan Jia, and Yong Jiang, High-yield carbon nanofibers derived from nanoporous Cu catalyst alloyed with Ni for sodium storage with high cycling stability, Int. J. Miner. Metall. Mater.,(2025). https://dx.doi.org/10.1007/s12613-024-2987-4
引用本文 PDF XML SpringerLink

纳米多孔Cu–Ni催化制备高产率碳纳米纤维实现高循环稳定钠储存

摘要: 高性能、低成本的负极材料对于优质的钠离子电池(SIB)的发展至关重要。因此应用化学气相沉积工艺,基于一种特殊的纳米多孔铜镍合金催化剂,制备了高产率的三维碳纳米纤维负极材料(CNFs@Cu–Ni)。密度泛函数计算表明,镍的存在使催化剂的d带中心从 −2.34157 eV移动到 −1.93682 eV,这一现象阐明了铜镍催化剂对碳源气体的显著吸附能力,从而加快了碳纳米纤维的制备速率。通过应用这种特殊催化剂,在1小时的制备时间后,碳材料的产率可以达到258.6%,是普通铜催化剂的2倍。并且,在钠离子电池中CNFs@Cu-Ni负极拥有高稳定性,在1 A·g−1下,CNFs@Cu–Ni负极可以在1000次循环后维持193.6 mAh·g−1的放电比容量,展现了高循环稳定性。配合醚基电解液时,即使在5 A·g−1下,CNFs@Cu-Ni电极也能保持158.9 mAh·g−1的容量。另外,由于CNFs@Cu–Ni丰富的钠离子吸附位点,CNFs@Cu–Ni//磷酸钒钠全电池也表现出了优异的稳定性,展现了实用价值。本研究为SIB的高性能碳质电极发展提供了一个新思路。

 

High-yield carbon nanofibers derived from nanoporous Cu catalyst alloyed with Ni for sodium storage with high cycling stability

Abstract: High-performance and low-cost anode materials are critical for superior sodium-ion batteries (SIBs). Herein, high-yield porous carbon nanofiber (CNF) anode materials (named CNFs@Cu–Ni) are prepared by chemical vapor deposition using a specialized nanoporous Cu–Ni alloy catalyst. Density functional theory calculations indicate that Ni incorporation results in a shift of the d-band center of the catalyst from −2.34157 eV to −1.93682 eV. This phenomenon elucidates the remarkable adsorption capacity of the Cu–Ni catalyst toward C2H2, thereby facilitating the catalytic growth of high-performance CNFs. With this approach, a superior yield of 258.6% for deposited carbon is reached after growth for 1 h. The CNFs@Cu–Ni anode presents an outstanding discharge capacity of 193.6 mAh·g−1 at 1 A·g−1 over 1000 cycles and an exceptional rate capability by maintaining a capacity of 158.9 mAh·g−1 even at 5 A·g−1 in an ether-based electrolyte. It also exhibits excellent performance in the CNFs@Cu–Ni//NVP full battery attributed to the presence of abundant Na+ adsorption sites on its surface. This study presents a new concept for the advancement of high-performance carbonaceous electrodes for SIBs.

 

/

返回文章
返回