留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 32 Issue 1
Jan.  2025

图(11)  / 表(4)

数据统计

分享

计量
  • 文章访问数:  407
  • HTML全文浏览量:  171
  • PDF下载量:  28
  • 被引次数: 0
Choulong Veann, Thongsuk Sichumsaeng, Ornuma Kalawa, Narong Chanlek, Pinit Kidkhunthod, and Santi Maensiri, Structure and electrochemical performance of delafossite AgFeO2 nanoparticles for supercapacitor electrodes, Int. J. Miner. Metall. Mater., 32(2025), No. 1, pp. 201-213. https://doi.org/10.1007/s12613-024-2992-7
Cite this article as:
Choulong Veann, Thongsuk Sichumsaeng, Ornuma Kalawa, Narong Chanlek, Pinit Kidkhunthod, and Santi Maensiri, Structure and electrochemical performance of delafossite AgFeO2 nanoparticles for supercapacitor electrodes, Int. J. Miner. Metall. Mater., 32(2025), No. 1, pp. 201-213. https://doi.org/10.1007/s12613-024-2992-7
引用本文 PDF XML SpringerLink
研究论文

铜铁矿AgFeO2纳米粒子用于超级电容器电极的电化学性能


  • 通讯作者:

    Choulong Veann    E-mail: veannchoulong168@gmail.com

  • 采用简单的共沉淀法成功制备了具有2H和3R相混合六方结构的铜铁矿AgFeO₂纳米粒子。将所得前驱体在100、200、300、400和500°C的温度下煅烧,以获得铜铁矿AgFeO₂相。通过场发射扫描电子显微镜(FESEM)、透射电子显微镜(TEM)、Brunauer-Emmett-Teller N2吸附–解吸、X射线吸收光谱(XAS)和X射线光电子能谱(XPS)技术对制备的AgFeO₂样品的形态和微观结构进行了表征。采用三电极系统研究了铜铁矿AgFeO₂纳米粒子在3 M KOH电解质中的电化学性能。在100°C下煅烧的铜铁矿AgFeO₂纳米粒子(AFO100)显示出的高比表面积(28.02 m²∙g–1)和出色的电化学性能,在电流密度为1 A∙g–1时比电容为229.71 F∙g–1,在扫描速率为2 mV∙s−1时比容量为358.32 F∙g−1,且在1000次充电/放电循环后,电容保持率为82.99%,比功率和比能量值分别为797.46 W∙kg−1和72.74 Wh∙kg−1。这些发现表明,铜铁矿AgFeO₂作为超级电容器应用的电极材料具有巨大的潜力。
  • Research Article

    Structure and electrochemical performance of delafossite AgFeO2 nanoparticles for supercapacitor electrodes

    + Author Affiliations
    • Delafossite AgFeO2 nanoparticles with a mixture of 2H and 3R phases were successfully fabricated by using a simple co-precipitation method. The resulting precursor was calcined at temperatures of 100, 200, 300, 400, and 500°C to obtain the delafossite AgFeO2 phase. The morphology and microstructure of the prepared AgFeO2 samples were characterized by using field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), N2 adsorption/desorption, X-ray absorption spectroscopy (XAS), and X-ray photoelectron spectroscopy (XPS) techniques. A three-electrode system was employed to investigate the electrochemical properties of the delafossite AgFeO2 nanoparticles in a 3 M KOH electrolyte. The delafossite AgFeO2 nanoparticles calcined at 100°C (AFO100) exhibited the highest surface area of 28.02 m2∙g−1 and outstanding electrochemical performance with specific capacitances of 229.71 F∙g−1 at a current density of 1 A∙g−1 and 358.32 F∙g−1 at a scan rate of 2 mV∙s−1. This sample also demonstrated the capacitance retention of 82.99% after 1000 charge/discharge cycles, along with superior specific power and specific energy values of 797.46 W∙kg−1 and 72.74 Wh∙kg−1, respectively. These findings indicate that delafossite AgFeO2 has great potential as an electrode material for supercapacitor applications.
    • loading
    • [1]
      M. Gopikrishnan, Battery/ultra capacitor hybrid energy storage system for electric, hybrid and plug-in hybrid electric vehicles, Middle East J. Sci. Res., 20(2014), No. 9, p. 1122.
      [2]
      F. Béguin, V. Presser, A. Balducci, and E. Frackowiak, Carbons and electrolytes for advanced supercapacitors, Adv. Mater., 26(2014), No. 14, p. 2219. doi: 10.1002/adma.201304137
      [3]
      M.A.A. Mohd Abdah, N.H.N. Azman, S. Kulandaivalu, and Y. Sulaiman, Review of the use of transition-metal-oxide and conducting polymer-based fibres for high-performance supercapacitors, Mater. Des., 186(2020), art. No. 108199. doi: 10.1016/j.matdes.2019.108199
      [4]
      S.D. Perera, M. Rudolph, R.G. Mariano, et al., Manganese oxide nanorod–graphene/vanadium oxide nanowire–graphene binder-free paper electrodes for metal oxide hybrid supercapacitors, Nano Energy, 2(2013), No. 5, p. 966. doi: 10.1016/j.nanoen.2013.03.018
      [5]
      K. Xie, X.T. Qin, X.Z. Wang, et al., Carbon nanocages as supercapacitor electrode materials, Adv. Mater., 24(2012), No. 3, p. 347. doi: 10.1002/adma.201103872
      [6]
      B.Z. Fang and L. Binder, A novel carbon electrode material for highly improved EDLC performance, J. Phys. Chem. B, 110(2006), No. 15, p. 7877. doi: 10.1021/jp060110d
      [7]
      J. Yu, N. Fu, J. Zhao, et al., High specific capacitance electrode material for supercapacitors based on resin-derived nitrogen-doped porous carbons, ACS Omega, 4(2019), No. 14, p. 15904. doi: 10.1021/acsomega.9b01916
      [8]
      C.Q. Yi, J.P. Zou, H.Z. Yang, and X. Leng, Recent advances in pseudocapacitor electrode materials: Transition metal oxides and nitrides, Trans. Nonferrous Met. Soc. China, 28(2018), No. 10, p. 1980. doi: 10.1016/S1003-6326(18)64843-5
      [9]
      S. Okashy, M. Noked, T. Zimrin, and D. Aurbach, The study of activated carbon/CNT/MoO3 electrodes for aqueous pseudo-capacitors, J. Electrochem. Soc., 160(2013), No. 9, p. A1489. doi: 10.1149/2.084309jes
      [10]
      Y. Liu, S.P. Jiang, and Z. Shao, Intercalation pseudocapacitance in electrochemical energy storage: Recent advances in fundamental understanding and materials development, Mater. Today Adv., 7(2020), art. No. 100072. doi: 10.1016/j.mtadv.2020.100072
      [11]
      Y.Y. Gao, S.L. Chen, D.X. Cao, G.L. Wang, and J.L. Yin, Electrochemical capacitance of Co3O4 nanowire arrays supported on nickel foam, J. Power Sources, 195(2010), No. 6, p. 1757. doi: 10.1016/j.jpowsour.2009.09.048
      [12]
      M.S. Wu and R.H. Lee, Electrochemical growth of iron oxide thin films with nanorods and nanosheets for capacitors, J. Electrochem. Soc., 156(2009), No. 9, art. No. A737. doi: 10.1149/1.3160547
      [13]
      S.Y. Wang, K.C. Ho, S.L. Kuo, and N.L. Wu, Investigation on capacitance mechanisms of Fe3O4 electrochemical capacitors, J. Electrochem. Soc., 153(2006), No. 1, art. No. A75. doi: 10.1149/1.2131820
      [14]
      K.W. Nam, W.S. Yoon, and K.B. Kim, X-ray absorption spectroscopy studies of nickel oxide thin film electrodes for supercapacitors, Electrochim. Acta, 47(2002), No. 19, p. 3201. doi: 10.1016/S0013-4686(02)00240-2
      [15]
      J.G. Zhao, X.H. Zhang, S.J. Liu, W.Y. Zhang, and Z.J. Liu, Effect of Ni substitution on the crystal structure and magnetic properties of BiFeO3, J. Alloys Compd., 557(2013), p. 120. doi: 10.1016/j.jallcom.2013.01.005
      [16]
      X.H. Yang, Y.G. Wang, H.M. Xiong, and Y.Y. Xia, Interfacial synthesis of porous MnO2 and its application in electrochemical capacitor, Electrochim. Acta, 53(2007), No. 2, p. 752. doi: 10.1016/j.electacta.2007.07.043
      [17]
      C.C. Hu and W.C. Chen, Effects of substrates on the capacitive performance of RuO x·nH2O and activated carbon–RuO x electrodes for supercapacitors, Electrochim. Acta, 49(2004), No. 21, p. 3469. doi: 10.1016/j.electacta.2004.03.017
      [18]
      I.H. Kim and K.B. Kim, Electrochemical characterization of hydrous ruthenium oxide thin-film electrodes for electrochemical capacitor applications, J. Electrochem. Soc., 153(2006), No. 2, art. No. A383. doi: 10.1149/1.2147406
      [19]
      Q.T. Qu, S.B. Yang, and X.L. Feng, 2D sandwich-like sheets of iron oxide grown on graphene as high energy anode material for supercapacitors, Adv. Mater., 23(2011), No. 46, p. 5574. doi: 10.1002/adma.201103042
      [20]
      W.J. Croft, N.C. Tombs, and R.E. England, Crystallographic data for pure crystalline silver ferrite, Acta Crystallogr., 17(1964), No. 3, art. No. 313. doi: 10.1107/S0365110X64000755
      [21]
      S. Okamoto, S.I. Okamoto, and T. Ito, The crystal structure of a new hexagonal phase of AgFeO2, Acta Crystallogr., 28(1972), No. 6, p. 1774. doi: 10.1107/S056774087200500X
      [22]
      N. Terada, D.D. Khalyavin, P. Manuel, Y. Tsujimoto, and A.A. Belik, Magnetic ordering and ferroelectricity in multiferroic 2H-AgFeO2: Comparison between hexagonal and rhombohedral polytypes, Phys. Rev. B, 91(2015), No. 9, art. No. 094434. doi: 10.1103/PhysRevB.91.094434
      [23]
      W.C. Sheets, E. Mugnier, A. Barnabé, T.J. Marks, and K.R. Poeppelmeier, Hydrothermal synthesis of delafossite-type oxides, Chem. Mater., 18(2006), No. 1, p. 7. doi: 10.1021/cm051791c
      [24]
      J. Ahmed, N. Alhokbany, A. Husain, T. Ahmad, M.A. Majeed Khan, and S.M. Alshehri, Synthesis, characterization, and significant photochemical performances of delafossite AgFeO2 nanoparticles, J. Sol Gel Sci. Technol., 94(2020), No. 2, p. 493. doi: 10.1007/s10971-020-05274-3
      [25]
      H.N. Abdelhamid, A. Talib, and H.F. Wu, Correction: Facile synthesis of water soluble silver ferrite (AgFeO2) nanoparticles and their biological application as antibacterial agents, RSC Adv., 5(2015), No. 50, p. 39952. doi: 10.1039/C5RA90041G
      [26]
      L. Yin, Y.B. Shi, L. Lu, R.Y. Fang, X.K. Wan, and H.X. Shi, A novel delafossite structured visible-light sensitive AgFeO2 photocatalyst: Preparation, photocatalytic properties, and reaction mechanism, Catalysts, 6(2016), No. 5, art. No. 69. doi: 10.3390/catal6050069
      [27]
      E. Magdaluyo Jr and M. Veran, Synthesis and electrochemical study of AgFeO2 nanoparticles, Meet. Abstr., MA2020-01(2020), No. 28, art. No. 2177. doi: 10.1149/MA2020-01282177mtgabs
      [28]
      K.E. Farley, A.C. Marschilok, E.S. Takeuchi, and K.J. Takeuchi, Synthesis and electrochemistry of silver ferrite, Electrochem. Solid State Lett., 15(2011), No. 2, p. A23. doi: 10.1149/2.010202esl
      [29]
      P. Berastegui, C.W. Tai, and M. Valvo, Electrochemical reactions of AgFeO2 as negative electrode in Li- and Na-ion batteries, J. Power Sources, 401(2018), p. 386. doi: 10.1016/j.jpowsour.2018.09.002
      [30]
      K. Siedliska, T. Pikula, D. Chocyk, and E. Jartych, Synthesis and characterization of AgFeO2 delafossite with non-stoichiometric silver concentration, Nukleonika, 62(2017), No. 2, p. 165. doi: 10.1515/nuka-2017-0025
      [31]
      K. Siedliska, J. Przewoźnik, M. Arczewska, M. Kosmulski, and E.Z. Jartych, Effect of annealing temperature on structural properties of the co-precipitated delafossite AgFeO2, Mater. Res. Express, 6(2019), No. 8, art. No. 086113. doi: 10.1088/2053-1591/ab26f9
      [32]
      A.N. Singh, R. Mondal, C. Rath, and P. Singh, Electrochemical performance of delafossite, AgFeO2: A pseudo-capacitive electrode in neutral aqueous Na2SO4 electrolyte, J. Electrochem. Soc., 168(2021), No. 12, art. No. 120512. doi: 10.1149/1945-7111/ac3c23
      [33]
      P.M. Anjana, P.R. Ranjani, and R.B. Rakhi, Cu–Fe based oxides and selenides as advanced electrode materials for high performance symmetric supercapacitors, Mater. Lett., 296(2021), art. No. 129827. doi: 10.1016/j.matlet.2021.129827
      [34]
      H.H. Joo, C.V.V.M. Gopi, R. Vinodh, H.J. Kim, S. Sambasivam, and I.M. Obaidat, Facile synthesis of flexible and binder-free dandelion flower-like CuNiO2 nanostructures as advanced electrode material for high-performance supercapacitors, J. Energy Storage, 26(2019), art. No. 100914. doi: 10.1016/j.est.2019.100914
      [35]
      R. Manickam, J. Yesuraj, and K. Biswas, Doped CuCrO2: A possible material for supercapacitor applications, Mater. Sci. Semicond. Process., 109(2020), art. No. 104928. doi: 10.1016/j.mssp.2020.104928
      [36]
      F. Bahmani, S.H. Kazemi, Y.H. Wu, L. Liu, Y. Xu, and Y. Lei, CuMnO2-reduced graphene oxide nanocomposite as a free-standing electrode for high-performance supercapacitors, Chem. Eng. J., 375(2019), art. No. 121966. doi: 10.1016/j.cej.2019.121966
      [37]
      Y.Y. Mao, Y.W. Yang, X.W. Meng, et al., A facile approach to prepare novel coral-like Ag3C6H5O7 microstructures for surface-enhanced Raman scattering, Chem. Lett., 45(2016), No. 2, p. 232. doi: 10.1246/cl.151043
      [38]
      T. Yamashita and P. Hayes, Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials, Appl. Surf. Sci., 254(2008), No. 8, p. 2441. doi: 10.1016/j.apsusc.2007.09.063
      [39]
      P. Mills and J.L. Sullivan, A study of the core level electrons in iron and its three oxides by means of X-ray photoelectron spectroscopy, J. Phys. D Appl. Phys., 16(1983), No. 5, p. 723. doi: 10.1088/0022-3727/16/5/005
      [40]
      D.D. Hawn and B.M. DeKoven, Deconvolution as a correction for photoelectron inelastic energy losses in the core level XPS spectra of iron oxides, Surf. Interface Anal., 10(1987), No. 2-3, p. 63. doi: 10.1002/sia.740100203
      [41]
      M. Muhler, R. Schlögl, and G. Ertl, The nature of the iron oxide-based catalyst for dehydrogenation of ethylbenzene to styrene 2. Surface chemistry of the active phase, J. Catal., 138(1992), No. 2, p. 413. doi: 10.1016/0021-9517(92)90295-S
      [42]
      H.W. Che, A.F. Liu, J.B. Mu, C.X. Wu, and X.L. Zhang, Template-free synthesis of novel flower-like MnCo2O4 hollow microspheres for application in supercapacitors, Ceram. Int., 42(2016), No. 2, p. 2416. doi: 10.1016/j.ceramint.2015.10.041
      [43]
      C.M. Wang, C.Y. Wen, Y.C. Chen, et al., The Influence of Specific Surface Area on the Capacitance of the Carbon Electrodes Supercapacitor, [in] The Proceedings of the 3rd International Conference on Industrial Application Engineering, Kitakyushu, 2015, p. 439.
      [44]
      Y. Suda, A. Mizutani, T. Harigai, H. Takikawa, H. Ue, and Y. Umeda, Influences of internal resistance and specific surface area of electrode materials on characteristics of electric double layer capacitors, [in] AIP Conference Proceedings, Tokyo, 2017.
      [45]
      U. Wongpratat, P. Tipsawat, J. Khajonrit, E. Swatsitang, and S. Maensiri, Effects of nickel and magnesium on electrochemical performances of partial substitution in spinel ferrite, J. Alloys Compd., 831(2020), art. No. 154718. doi: 10.1016/j.jallcom.2020.154718
      [46]
      R. Pai, A. Singh, S. Simotwo, and V. Kalra, In situ grown iron oxides on carbon nanofibers as freestanding anodes in aqueous supercapacitors, Adv. Eng. Mater., 20(2018), No. 6, art. No. 1701116. doi: 10.1002/adem.201701116
      [47]
      K. Anderson, B. Poulter, J. Dudgeon, S.E. Li, and X. Ma, A highly sensitive nonenzymatic glucose biosensor based on the regulatory effect of glucose on electrochemical behaviors of colloidal silver nanoparticles on MoS2, Sensors, 17(2017), No. 8, art. No. 1807. doi: 10.3390/s17081807
      [48]
      C. van der Horst, B. Silwana, E. Iwuoha, and V. Somerset, Bismuth–silver bimetallic nanosensor application for the voltammetric analysis of dust and soil samples, J. Electroanal. Chem., 752(2015), p. 1. doi: 10.1016/j.jelechem.2015.06.001
      [49]
      W.M. Latimer, The oxidation states of the elements and their potentials in aqueous solutions, Soil Sci., 48(1939), No. 4, art. No. 349.
      [50]
      H. Jiang, L.P. Yang, C.Z. Li, C.Y. Yan, P.S. Lee, and J. Ma, High-rate electrochemical capacitors from highly graphitic carbon–tipped manganese oxide/mesoporous carbon/manganese oxide hybrid nanowires, Energy Environ. Sci., 4(2011), No. 5, p. 1813. doi: 10.1039/c1ee01032h
      [51]
      M. Sethi, U.S. Shenoy, and D.K. Bhat, A porous graphene–NiFe2O4 nanocomposite with high electrochemical performance and high cycling stability for energy storage applications, Nanoscale Adv., 2(2020), No. 9, p. 4229. doi: 10.1039/D0NA00440E
      [52]
      K. Karuppasamy, D. Vikraman, J.H. Jeon, et al., Highly porous, hierarchical microglobules of Co3O4 embedded N-doped carbon matrix for high performance asymmetric supercapacitors, Appl. Surf. Sci., 529(2020), art. No. 147147. doi: 10.1016/j.apsusc.2020.147147
      [53]
      F. Barzegar, D.Y. Momodu, O.O. Fashedemi, A. Bello, J.K. Dangbegnon, and N. Manyala, Investigation of different aqueous electrolytes on the electrochemical performance of activated carbon-based supercapacitors, RSC Adv., 5(2015), No. 130, p. 107482. doi: 10.1039/C5RA21962K

    Catalog


    • /

      返回文章
      返回