Cite this article as:

Kaiyang Wang, Honghui Wu, Shaojie Lv, Linshuo Dong, Chaolei Zhang, Shuize Wang, Guilin Wu, Junheng Gao, Jiaming Zhu, and Xinping Mao, Multiphase field modeling of austenite to pearlite–ferrite transformation in hypoeutectoid steel, Int. J. Miner. Metall. Mater.,(2025). https://dx.doi.org/10.1007/s12613-024-2993-6
Kaiyang Wang, Honghui Wu, Shaojie Lv, Linshuo Dong, Chaolei Zhang, Shuize Wang, Guilin Wu, Junheng Gao, Jiaming Zhu, and Xinping Mao, Multiphase field modeling of austenite to pearlite–ferrite transformation in hypoeutectoid steel, Int. J. Miner. Metall. Mater.,(2025). https://dx.doi.org/10.1007/s12613-024-2993-6
引用本文 PDF XML SpringerLink

亚共析钢中奥氏体向珠光体–铁素体相变的多相场模拟

摘要: 亚共析钢是一类重要的金属结构材料,其显微组织主要由铁素体与珠光体共存构成。由于其多相竞争及多组分特性,成分、加工条件与组织结构之间存在复杂的耦合关系,显著加大了对奥氏体分解动力学及相变过程中元素扩散机制的理解难度。为深入揭示其组织演化机制,本文系统研究了冷却速率、原始奥氏体晶粒尺寸(PAGS)及碳含量等因素对亚共析钢在奥氏体分解过程中的成分分布与组织演化的影响。多相场模拟结果表明,当冷却速率从1.0°C/s提高至7.0°C/s时,400°C时铁素体体积分数从52vol%降低至22vol%,而660°C时珠光体片层间距由1.01 μm降至0.87 μm。与此同时,PAGS从25.23 μm缩小至8.92 μm,有效增强了相变驱动力,促使珠光体团簇及先共析铁素体的平均晶粒尺寸明显减小。此外,碳含量从0.22wt%增加至0.37wt%,使相变温度由795°C降低至750°C,并在500°C时使珠光体体积分数由27vol%提高至61vol%,在600°C时的珠光体层间距则由1.25 μm细化至0.87 μm。综上所述,本研究揭示了亚共析钢奥氏体分解过程中的复杂组织转变行为和元素分布规律,为其组织调控与热处理工艺优化提供理论依据与模拟支撑。

 

Multiphase field modeling of austenite to pearlite–ferrite transformation in hypoeutectoid steel

Abstract: Hypoeutectoid steel, a crucial metal structural material, is characterized by the coexisting microstructure of ferrite and pearlite. Driven by multiphase competition and multicomponent characteristics, the intricate interplay among its composition, processing conditions, and microstructure substantially complicates the understanding of austenite decomposition kinetics and elemental diffusion mechanisms during phase transformations. The present study explores the effects of cooling rate, prior austenite grain size, and C content on the component distribution and microstructure evolution during the austenite decomposition of hypoeutectoid steels to address the aforementioned complexities. Results of a multiphase field model reveal that an increase in the cooling rate from 1.0 to 7.0°C/s leads to a reduction in the ferrite proportion and fine pearlite lamellae spacing from 52vol% to 22vol% at 400°C and from 1.01 to 0.67 μm at 660°C, respectively. Concurrently, a decreased prior austenite grain size from 25.23 to 8.92 μm enhances the phase transformation driving force, resulting in small average grain sizes of pearlite clusters and proeutectoid ferrite. Moreover, increasing the C content from 0.22wt% to 0.37wt% decreases the phase transition temperature from 795 to 750°C and enhances the proportion of pearlite phases from 27vol% to 61vol% at 500°C, concurrently refining the spacing of pearlite layers from 1.25 to 0.87 μm at 600°C. Overall, this work aims to elucidate the complex dynamics governing the microstructural transformations of hypoeutectoid steels, thereby facilitating their wide application across different industrial scenes.

 

/

返回文章
返回