Cite this article as:

Xunlei Chen, Lin Chen, Jiang Tian, Cheng Xu, Jiaxin Liao, Tianyu Li, Jiankun Wang, and Jing Feng, Thermal and mechanical properties of MO2 (M = Ti, Zr, Hf) co-doped YTaO4 medium-entropy ceramics, Int. J. Miner. Metall. Mater.,(2025). https://dx.doi.org/10.1007/s12613-024-3005-6
Xunlei Chen, Lin Chen, Jiang Tian, Cheng Xu, Jiaxin Liao, Tianyu Li, Jiankun Wang, and Jing Feng, Thermal and mechanical properties of MO2 (M = Ti, Zr, Hf) co-doped YTaO4 medium-entropy ceramics, Int. J. Miner. Metall. Mater.,(2025). https://dx.doi.org/10.1007/s12613-024-3005-6
引用本文 PDF XML SpringerLink

MO2 (M = Ti , Zr , Hf)共掺杂YTaO4中熵陶瓷的热学和力学性能

摘要: 传统的热障涂层材料氧化钇稳定氧化锆(YSZ)已难以满足航空发动机不断提升的耐温需求。YTaO4由于具有与YSZ相似的铁弹增韧机制,低热导率成为了近年来的研究热点。为了进一步提高YTaO4的性能,本文采用两步烧结法制备Y1−xTa1−xM2xO4 (M = Ti, Zr, Hf; x = 0.06, 0.12, 0.18, 0.24)中熵陶瓷。同时,研究了Y1−xTa1−xM2xO4中熵陶瓷的热导率、热膨胀系数和断裂韧性。X射线衍射研究表明,Y1−xTa1−xM2xO4中熵陶瓷为单斜晶系,Ti、Zr和Hf掺杂元素取代了Y和Ta。原子质量和离子半径的变化导致原子排列紊乱和严重的晶格畸变,从而增强了声子散射,降低了热导率,其中Y1−xTa1−xM2xO4 ( x = 0.24)在900°C时具有最低的热导率1.23 W·m−1·K−1。MO2的引入增加了构型熵并削弱了离子键能,获得了高的热膨胀系数( 1400°C时为10.4 × 10−6 K−1)。单斜角β的减小降低了铁弹畴翻转能垒。此外,微裂纹和裂纹扩展增韧使Y1−xTa1−xM2xO4 ( x = 0.24)具有最高的断裂韧性(4.1 ± 0.5) MPa·m1/2

 

Thermal and mechanical properties of MO2 (M = Ti, Zr, Hf) co-doped YTaO4 medium-entropy ceramics

Abstract: Thermal and mechanical properties of yttrium tantalate (YTaO4), a top coat ceramic of thermal barrier coatings (TBCs) for aeroengines, are enhanced by synthesizing Y1−xTa1−xM2xO4 (M = Ti, Zr, Hf; x = 0.06, 0.12, 0.18, 0.24) medium-entropy ceramics (MECs) using a two-step sintering method. In addition, the thermal conductivity, thermal expansion coefficients (TECs), and fracture toughness of MECs were investigated. An X-ray diffraction study revealed that the Y1−xTa1−xM2xO4 MECs were monoclinic, and the Ti, Zr, and Hf doping elements replaced Y and Ta. The variations in atomic weights and ionic radii led to disturbed atomic arrangements and severe lattice distortions, resulting in improving the phonon scattering and reduced thermal conductivity, with Y1−xTa1−xM2xO4 MECs (x = 0.24) exhibiting the lowest thermal conductivity of 1.23 W·m−1·K−1 at 900°C. The introduction of MO2 increased the configurational entropy and weakened the ionic bonding energy, obtaining high TECs (10.4 × 10−6 K−1 at 1400°C). The reduction in the monoclinic angle β lowered the ferroelastic domain inversion energy barrier. Moreover, microcracks and crack extension toughening endowed Y1−xTa1−xM2xO4 MECs (x = 0.24) with the highest fracture toughness of (4.1 ± 0.5) MPa·m1/2. The simultaneous improvement of the thermal and mechanical properties of the MO2 (M = Ti, Zr, Hf) co-doped YTaO4 MECs can be extended to other materials.

 

/

返回文章
返回