留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 32 Issue 2
Feb.  2025

图(15)

数据统计

分享

计量
  • 文章访问数:  266
  • HTML全文浏览量:  112
  • PDF下载量:  17
  • 被引次数: 0
Qian Yin, Fan Wen, Zhigang Tao, Hai Pu, Tianci Deng, Yaoyao Meng, Qingbin Meng, Hongwen Jing, Bo Meng, and Jiangyu Wu, Effects of aggregate size distribution and carbon nanotubes on the mechanical properties of cemented gangue backfill samples under true triaxial compression, Int. J. Miner. Metall. Mater., 32(2025), No. 2, pp. 311-324. https://doi.org/10.1007/s12613-024-3014-5
Cite this article as:
Qian Yin, Fan Wen, Zhigang Tao, Hai Pu, Tianci Deng, Yaoyao Meng, Qingbin Meng, Hongwen Jing, Bo Meng, and Jiangyu Wu, Effects of aggregate size distribution and carbon nanotubes on the mechanical properties of cemented gangue backfill samples under true triaxial compression, Int. J. Miner. Metall. Mater., 32(2025), No. 2, pp. 311-324. https://doi.org/10.1007/s12613-024-3014-5
引用本文 PDF XML SpringerLink
研究论文

真三轴压缩条件下骨料粒径分布和碳纳米管对矸石胶结充填体力学性能的影响



  • 通讯作者:

    文凡    E-mail: w15135313372@163.com

    吴疆宇    E-mail: wujiangyu@cumt.edu.cn

文章亮点

  • (1) 系统分析了矸石胶结充填体在真三轴压缩下的力学性能和能量耗散特征。
  • (2) 研究了碳纳米管和骨料粒径分布对材料力学响应的微观影响机理。
  • (3) 研究了矸石胶结充填体在真三轴压缩环境下的裂纹扩展模式和破坏模式。
  • 矸石胶结充填材料的力学性能与骨料级配、胶结材料性能密切相关。在此基础上,对骨料粒径分布满足分形理论的不同CNT浓度的矸石胶结充填体(CGBSs)进行了真三轴压缩、SEM及EDS试验。研究了CGBSs在真三轴压缩作用下的变形特性、能耗特征和破坏机理。试验结果表明,添加适量的碳纳米管可有效提升CGBSs的力学性能和能量耗散,其最佳效果出现在CNT浓度为0.08wt%时。以PSD分形维数(D)为2.500为例,相比于PCNT为 0的CGBS,PCNT 为0.08wt%的CGBS的峰值强度($ {\sigma _{\text{p}}} $)、轴向峰值应变($ {\varepsilon _{{\text{1p}}}} $)、弹性能($ {U_{\text{e}}} $)和耗散能($ {U_{\text{d}}} $)分别提高了12.76%、29.60%、19.05%和90.39%。然而,过量的CNTs会因团聚而降低CGBSs的力学性能,表现为当PCNT从0.08wt%增加到0.12wt%时,$ {\sigma _{\text{p}}} $、$ {\varepsilon _{{\text{1p}}}} $和体积应变增量($ \Delta {\varepsilon _{\text{v}}} $)降低明显。此外,CNTs的加入提高了CGBSs宏观破坏后的完整性,并且CGBSs的裂纹扩展出现了两种模式:沿骨料偏转绕行和穿过骨料。CGBSs的$ {\sigma _{\text{p}}} $和$ {U_{\text{d}}} $随着骨料粒径分布分形维数D的增加先增大后减小,孔隙度呈相反的趋势。峰值应变和弹性能均与分形维数呈负相关,当D = 2.150时,CGBSs的粗骨料摩擦滑移现象明显,其变形参数最大($ {\varepsilon _{{\text{1p}}}} $ = 0.05079, $ \Delta {\varepsilon _{\text{v}}} $ = 0.01990)。随着细骨料含量的增加,CGBSs的破坏模式由斜向剪切破坏过渡为“Y”形剪切破坏进而转化为“X”形剪切破坏。
  • Research Article

    Effects of aggregate size distribution and carbon nanotubes on the mechanical properties of cemented gangue backfill samples under true triaxial compression

    + Author Affiliations
    • The mechanical behavior of cemented gangue backfill materials (CGBMs) is closely related to particle size distribution (PSD) of aggregates and properties of cementitious materials. Consequently, the true triaxial compression tests, CT scanning, SEM, and EDS tests were conducted on cemented gangue backfill samples (CGBSs) with various carbon nanotube concentrations (PCNT) that satisfied fractal theory for the PSD of aggregates. The mechanical properties, energy dissipations, and failure mechanisms of the CGBSs under true triaxial compression were systematically analyzed. The results indicate that appropriate carbon nanotubes (CNTs) effectively enhance the mechanical properties and energy dissipations of CGBSs through micropore filling and microcrack bridging, and the optimal effect appears at PCNT of 0.08wt%. Taking PSD fractal dimension (D) of 2.500 as an example, compared to that of CGBS without CNT, the peak strength ($ {\sigma _{\text{p}}} $), axial peak strain ($ \varepsilon_{\text{1,p}} $), elastic strain energy ($ {U_{\text{e}}} $), and dissipated energy ($ {U_{\text{d}}} $) increased by 12.76%, 29.60%, 19.05%, and 90.39%, respectively. However, excessive CNTs can reduce the mechanical properties of CGBSs due to CNT agglomeration, manifesting a decrease in $ {\sigma _{\text{p}}} $, $ \varepsilon_{\text{1,p}} $, and the volumetric strain increment ($ \Delta {\varepsilon _{\text{v}}} $) when PCNT increases from 0.08wt% to 0.12wt%. Moreover, the addition of CNTs improved the integrity of CGBS after macroscopic failure, and crack extension in CGBSs appeared in two modes: detour and pass through the aggregates. The $ {\sigma _{\text{p}}} $ and $ {U_{\text{d}}} $ firstly increase and then decrease with increasing D, and porosity shows the opposite trend. The $ \varepsilon_{\text{1,p}} $ and $ \Delta {\varepsilon _{\text{v}}} $ are negatively correlated with D, and CGBS with D = 2.150 has the maximum deformation parameters ($ \varepsilon_{\text{1,p}} $ = 0.05079, $ \Delta {\varepsilon _{\text{v}}} $ = 0.01990) due to the frictional slip effect caused by coarse aggregates. With increasing D, the failure modes of CGBSs are sequentially manifested as oblique shear failure, “Y-shaped” shear failure, and conjugate shear failure.
    • loading
    • Supplementary Information-s12613-024-3014-5.pdf
    • [1]
      J.X. Zhang, B.Y. Li, N. Zhou, and Q. Zhang, Application of solid backfilling to reduce hard-roof caving and longwall coal face burst potential, Int. J. Rock Mech. Min. Sci., 88(2016), p. 197. doi: 10.1016/j.ijrmms.2016.07.025
      [2]
      Q.H. Ma, G.S. Liu, X.C. Yang, and L.J. Guo, Physical model investigation on effects of drainage condition and cement addition on consolidation behavior of tailings slurry within backfilled stopes, Int. J. Miner. Metall. Mater., 30(2023), No. 8, p. 1490. doi: 10.1007/s12613-023-2642-5
      [3]
      D.T. Wu, W.B. Guo, F. Luo, M. Li, and P. Wen, Stiffness of gangue backfilling body in goaf and its influence mechanism on rock strata control and stress evolution in gangue backfill mining, Environ. Sci. Pollut. Res., 30(2023), No. 22, p. 61789. doi: 10.1007/s11356-023-26509-0
      [4]
      M. Li, J.X. Zhang, A.L. Li, and N. Zhou, Reutilisation of coal gangue and fly ash as underground backfill materials for surface subsidence control, J. Cleaner Prod., 254(2020), art. No. 120113. doi: 10.1016/j.jclepro.2020.120113
      [5]
      D. Ma, M. Rezania, H.S. Yu, and H.B. Bai, Variations of hydraulic properties of granular sandstones during water inrush: Effect of small particle migration, Eng. Geol., 217(2017), p. 61. doi: 10.1016/j.enggeo.2016.12.006
      [6]
      G.L. Xue, E. Yilmaz, and Y.D. Wang, Progress and prospects of mining with backfill in metal mines in China, Int. J. Miner. Metall. Mater., 30(2023), No. 8, p. 1455. doi: 10.1007/s12613-023-2663-0
      [7]
      D. Ma, H.Y. Duan, J.F. Liu, X.B. Li, and Z.L. Zhou, The role of gangue on the mitigation of mining-induced hazards and environmental pollution: An experimental investigation, Sci. Total Environ., 664(2019), p. 436. doi: 10.1016/j.scitotenv.2019.02.059
      [8]
      R. Mohammadi, A. Azadmehr, and A. Maghsoudi, Fabrication of the alginate-combusted coal gangue composite for simultaneous and effective adsorption of Zn(II) and Mn(II), J. Environ. Chem. Eng., 7(2019), No. 6, art. No. 103494. doi: 10.1016/j.jece.2019.103494
      [9]
      X.Y. Liu, M. Jing, and Z.K. Bai, Heavy metal concentrations of soil, rock, and coal gangue in the geological profile of a large open-pit coal mine in China, Sustainability, 14(2022), No. 2, art. No. 1020. doi: 10.3390/su14021020
      [10]
      S. Jarny, N. Roussel, R. Le Roy, and P. Coussot, Modelling thixotropic behavior of fresh cement pastes from MRI measurements, Cem. Concr. Res., 38(2008), No. 5, p. 616. doi: 10.1016/j.cemconres.2008.01.001
      [11]
      X.B. Li, D.Y. Li, Z.X. Liu, G.Y. Zhao, and W.H. Wang, Determination of the minimum thickness of crown pillar for safe exploitation of a subsea gold mine based on numerical modelling, Int. J. Rock Mech. Min. Sci., 57(2013), p. 42. doi: 10.1016/j.ijrmms.2012.08.005
      [12]
      J.X. Zhang, Q. Zhang, A.J.S.S. Spearing, X.X. Miao, S. Guo, and Q. Sun, Green coal mining technique integrating mining–dressing–gas draining–backfilling–mining, Int. J. Min. Sci. Technol., 27(2017), No. 1, p. 17. doi: 10.1016/j.ijmst.2016.11.014
      [13]
      P. Lappi and M. Ollikainen, Optimal environmental policy for a mine under polluting waste rocks and stock pollution, Environ. Resour. Econ., 73(2019), No. 1, p. 133. doi: 10.1007/s10640-018-0253-9
      [14]
      H.J. Lu, Y.R. Wang, D.Q. Gan, J. Wu, and X.J. Wu, Numerical investigation of the mechanical behavior of the backfill–rock composite structure under triaxial compression, Int. J. Miner. Metall. Mater., 30(2023), No. 5, p. 802. doi: 10.1007/s12613-022-2554-9
      [15]
      B.L. Xiao, S.J. Miao, D.H. Xia, H.T. Huang, and J.Y. Zhang, Detecting the backfill pipeline blockage and leakage through an LSTM-based deep learning model, Int. J. Miner. Metall. Mater., 30(2023), No. 8, p. 1573. doi: 10.1007/s12613-022-2560-y
      [16]
      B.F. An, X.X. Miao, J.X. Zhang, F. Ju, and N. Zhou, Overlying strata movement of recovering standing pillars with solid backfilling by physical simulation, Int. J. Min. Sci. Technol., 26(2016), No. 2, p. 301. doi: 10.1016/j.ijmst.2015.12.017
      [17]
      P. Jongpradist, S. Youwai, and C. Jaturapitakkul, Effective void ratio for assessing the mechanical properties of cement-clay admixtures at high water content, J. Geotech. Geoenviron. Eng., 137(2011), No. 6, p. 621. doi: 10.1061/(ASCE)GT.1943-5606.0000462
      [18]
      E. Rahmani, M.K. Sharbatdar, and M. H.A.beygi, A comprehensive investigation into the effect of water to cement ratios and cement contents on the physical and mechanical properties of roller compacted concrete pavement (RCCP), Constr. Build. Mater., 253(2020), art. No. 119177. doi: 10.1016/j.conbuildmat.2020.119177
      [19]
      T.J. Liu, Z.Z. Wang, D.J. Zou, A. Zhou, and J.Z. Du, Strength enhancement of recycled aggregate pervious concrete using a cement paste redistribution method, Cem. Concr. Res., 122(2019), p. 72. doi: 10.1016/j.cemconres.2019.05.004
      [20]
      M. Fall and M. Benzaazoua, Modeling the effect of sulphate on strength development of paste backfill and binder mixture optimization, Cem. Concr. Res., 35(2005), No. 2, p. 301. doi: 10.1016/j.cemconres.2004.05.020
      [21]
      B. Ercikdi, H. Baki, and M. İzki, Effect of desliming of sulphide-rich mill tailings on the long-term strength of cemented paste backfill, J. Environ. Manage., 115(2013), p. 5. doi: 10.1016/j.jenvman.2012.11.014
      [22]
      A.X. Wu, Y. Wang, H.J. Wang, S.H. Yin, and X.X. Miao, Coupled effects of cement type and water quality on the properties of cemented paste backfill, Int. J. Miner. Process., 143(2015), p. 65. doi: 10.1016/j.minpro.2015.09.004
      [23]
      B. Koohestani, Effect of saline admixtures on mechanical and microstructural properties of cementitious matrices containing tailings, Constr. Build. Mater., 156(2017), p. 1019. doi: 10.1016/j.conbuildmat.2017.09.048
      [24]
      E. Yilmaz, T. Belem, B. Bussière, M. Mbonimpa, and M. Benzaazoua, Curing time effect on consolidation behaviour of cemented paste backfill containing different cement types and contents, Constr. Build. Mater., 75(2015), p. 99. doi: 10.1016/j.conbuildmat.2014.11.008
      [25]
      M.F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, and R.S. Ruoff, Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load, Science, 287(2000), No. 5453, p. 637. doi: 10.1126/science.287.5453.637
      [26]
      M.R. Du, H.W. Jing, W.H. Duan, G.S. Han, and S.J. Chen, Methylcellulose stabilized multi-walled carbon nanotubes dispersion for sustainable cement composites, Constr. Build. Mater., 146(2017), p. 76. doi: 10.1016/j.conbuildmat.2017.04.029
      [27]
      M.S. Konsta-Gdoutos, Z.S. Metaxa, and S.P. Shah, Multi-scale mechanical and fracture characteristics and early-age strain capacity of high performance carbon nanotube/cement nanocomposites, Cem. Concr. Compos., 32(2010), No. 2, p. 110. doi: 10.1016/j.cemconcomp.2009.10.007
      [28]
      Y. Gao, H.W. Jing, Z.F. Zhou, X.S. Shi, L. Li, and G.P. Fu, Roles of carbon nanotubes in reinforcing the interfacial transition zone and impermeability of concrete under different water-to-cement ratios, Constr. Build. Mater., 272(2021), art. No. 121664. doi: 10.1016/j.conbuildmat.2020.121664
      [29]
      M. Eftekhari, S. Mohammadi, and M. Khanmohammadi, A hierarchical nano to macro multiscale analysis of monotonic behavior of concrete columns made of CNT-reinforced cement composite, Constr. Build. Mater., 175(2018), p. 134. doi: 10.1016/j.conbuildmat.2018.04.168
      [30]
      L. Li, D.X. Xuan, A.O. Sojobi, S.H. Liu, S.H. Chu, and C.S. Poon, Development of nano-silica treatment methods to enhance recycled aggregate concrete, Cem. Concr. Compos., 118(2021), art. No. 103963. doi: 10.1016/j.cemconcomp.2021.103963
      [31]
      S.L. Xu, J.T. Liu, and Q.H. Li, Mechanical properties and microstructure of multi-walled carbon nanotube-reinforced cement paste, Constr. Build. Mater., 76(2015), p. 16. doi: 10.1016/j.conbuildmat.2014.11.049
      [32]
      P. Sikora, M. Abd Elrahman, S.Y. Chung, K. Cendrowski, E. Mijowska, and D. Stephan, Mechanical and microstructural properties of cement pastes containing carbon nanotubes and carbon nanotube-silica core-shell structures, exposed to elevated temperature, Cem. Concr. Compos., 95(2019), p. 193. doi: 10.1016/j.cemconcomp.2018.11.006
      [33]
      J.Y. Wu, M.M. Feng, X.Y. Ni, X.B. Mao, Z.Q. Chen, and G.S. Han, Aggregate gradation effects on dilatancy behavior and acoustic characteristic of cemented rockfill, Ultrasonics, 92(2019), p. 79. doi: 10.1016/j.ultras.2018.09.008
      [34]
      B.P. Gautam, D.K. Panesar, S.A. Sheikh, and F.J. Vecchio, Effect of coarse aggregate grading on the ASR expansion and damage of concrete, Cem. Concr. Res., 95(2017), p. 75. doi: 10.1016/j.cemconres.2017.02.022
      [35]
      J.Y. Wu, H.W. Jing, Y. Gao, Q.B. Meng, Q. Yin, and Y. Du, Effects of carbon nanotube dosage and aggregate size distribution on mechanical property and microstructure of cemented rockfill, Cem. Concr. Compos., 127(2022), art. No. 104408. doi: 10.1016/j.cemconcomp.2022.104408
      [36]
      X. Ke, H.B. Hou, M. Zhou, Y. Wang, and X. Zhou, Effect of particle gradation on properties of fresh and hardened cemented paste backfill, Constr. Build. Mater., 96(2015), p. 378. doi: 10.1016/j.conbuildmat.2015.08.057
      [37]
      Y. Gao, H.W. Jing, Z.X. Yu, L. Li, J.Y. Wu, and W.Q. Chen, Particle size distribution of aggregate effects on the reinforcing roles of carbon nanotubes in enhancing concrete ITZ, Constr. Build. Mater., 327(2022), art. No. 126964. doi: 10.1016/j.conbuildmat.2022.126964
      [38]
      A. Kesimal, E. Yilmaz, B. Ercikdi, I. Alp, and H. Deveci, Effect of properties of tailings and binder on the short-and long-term strength and stability of cemented paste backfill, Mater. Lett., 59(2005), No. 28, p. 3703. doi: 10.1016/j.matlet.2005.06.042
      [39]
      M.S. Meddah, S. Zitouni, and S. Belâabes, Effect of content and particle size distribution of coarse aggregate on the compressive strength of concrete, Constr. Build. Mater., 24(2010), No. 4, p. 505. doi: 10.1016/j.conbuildmat.2009.10.009
      [40]
      A. Kashani, R. San Nicolas, G.G. Qiao, J.S.J. van Deventer, and J.L. Provis, Modelling the yield stress of ternary cement–slag–fly ash pastes based on particle size distribution, Powder Technol., 266(2014), p. 203. doi: 10.1016/j.powtec.2014.06.041
      [41]
      S. Cao, E. Yilmaz, and W.D. Song, Evaluation of viscosity, strength and microstructural properties of cemented tailings backfill, Minerals, 8(2018), No. 8, art. No. 352. doi: 10.3390/min8080352
      [42]
      J.Z. Zhang, X.P. Zhou, and Y.H. Du, Cracking behaviors and acoustic emission characteristics in brittle failure of flawed sandstone: A true triaxial experiment investigation, Rock Mech. Rock Eng., 56(2023), No. 1, p. 167. doi: 10.1007/s00603-022-03087-0
      [43]
      B.G. He, L. Wang, X.T. Feng, and R.L. Zhen, Failure modes of jointed granite subjected to weak dynamic disturbance under true-triaxial compression, Rock Mech. Rock Eng., 56(2023), No. 11, p. 7939. doi: 10.1007/s00603-023-03507-9
      [44]
      Z.C. Wang, W.C. Shi, R. Cong, and J.F. Guo, Mechanical properties of deep sandstone under true triaxial stress, J. Northeast. Univ. Nat. Sci., 44(2023), No. 5, p. 689.
      [45]
      J.J. Pan, J.W. Jiang, Z.L. Cheng, H. Xu, and Y.Z. Zuo, Large-scale true triaxial test on stress-strain and strength properties of rockfill, Int. J. Geomech., 20(2020), No. 1, art. No. 04019146. doi: 10.1061/(ASCE)GM.1943-5622.0001527
      [46]
      J.X. Zhang, M. Li, Z. Liu, and N. Zhou, Fractal characteristics of crushed particles of coal gangue under compaction, Powder Technol., 305(2017), p. 12. doi: 10.1016/j.powtec.2016.09.049
      [47]
      X.T. Feng, B. Haimson, X.C. Li, et al., ISRM suggested method: Determining deformation and failure characteristics of rocks subjected to true triaxial compression, Rock Mech. Rock Eng., 52(2019), No. 6, p. 2011. doi: 10.1007/s00603-019-01782-z
      [48]
      J.Y. Wu, H.W. Jing, Q. Yin, B. Meng, and G.S. Han, Strength and ultrasonic properties of cemented waste rock backfill considering confining pressure, dosage and particle size effects, Constr. Build. Mater., 242(2020), art. No. 118132. doi: 10.1016/j.conbuildmat.2020.118132
      [49]
      J.Y. Wu, M.M. Feng, X.B. Mao, et al., Particle size distribution of aggregate effects on mechanical and structural properties of cemented rockfill: Experiments and modeling, Constr. Build. Mater., 193(2018), p. 295. doi: 10.1016/j.conbuildmat.2018.10.208
      [50]
      J.S. Kim, K.S. Lee, W.J. Cho, H.J. Choi, and G.C. Cho, A comparative evaluation of stress–strain and acoustic emission methods for quantitative damage assessments of brittle rock, Rock Mech. Rock Eng., 48(2015), No. 2, p. 495. doi: 10.1007/s00603-014-0590-0

    Catalog


    • /

      返回文章
      返回