Cite this article as:

Changtian Zhu, Pei Liu, Jin Chen, Zixuan Ding, Guohui Tan, Qingqing Gao, Yinxu Ni, Kai Xu, Zhilei Hao, Gaojie Xu, and Fenghua Liu, Constructing Ti3C2Tx–MXene-based gradient woodpile structure by direct ink writing 3D printing for efficient microwave absorption, Int. J. Miner. Metall. Mater.,(2025). https://dx.doi.org/10.1007/s12613-024-3022-5
Changtian Zhu, Pei Liu, Jin Chen, Zixuan Ding, Guohui Tan, Qingqing Gao, Yinxu Ni, Kai Xu, Zhilei Hao, Gaojie Xu, and Fenghua Liu, Constructing Ti3C2Tx–MXene-based gradient woodpile structure by direct ink writing 3D printing for efficient microwave absorption, Int. J. Miner. Metall. Mater.,(2025). https://dx.doi.org/10.1007/s12613-024-3022-5
引用本文 PDF XML SpringerLink

通过直接墨水书写3D打印技术构建的基于Ti3C2Tx–MXene梯度木堆结构以实现高效微波吸收

摘要: 在电磁波吸收屏蔽研究领域,Ti3C2Tx–MXene材料因其独特的导电特性而备受关注。本研究针对两种形貌不同的Ti3C2Tx–MXene材料,通过分析其电磁参数的显著差异性,设计了与之相匹配的梯度木堆吸波结构。将两种形貌不同的Ti3C2Tx–Mxene分散到PDMS基体中,通过流变行为调控和墨水直写3D打印(DIW)可实现梯度木堆结构的精准成型。我们在未进行杂化或改性处理的前提下,仅通过结构与性能的优化匹配,实现了从弱吸收(厚度5 mm,反射损耗小于–15 dB,有效带宽小于2 GHz)到强吸收(厚度2–3 mm,反射损耗小于–70 dB,有效带宽小于7.73 GHz)的转变。

 

Constructing Ti3C2Tx–MXene-based gradient woodpile structure by direct ink writing 3D printing for efficient microwave absorption

Abstract: As a novel 2D material, Ti3C2Tx–MXene has become a major area of interest in the field of microwave absorption (MA). However, the MA effect of common Ti3C2Tx–MXene is not prominent and often requires complex processes or combinations of other materials to achieve enhanced performance. In this context, a kind of gradient woodpile structure using common Ti3C2Tx–MXene as MA material was designed and manufactured through direct ink writing (DIW) 3D printing. The minimum reflection loss (RLmin) of the Ti3C2Tx–MXene-based gradient woodpile structures with a thickness of less than 3 mm can reach −70 dB, showing considerable improvement compared with that of a completely filled structure. In addition, the effective absorption bandwidth (EAB) reaches 7.73 GHz. This study demonstrates that a Ti3C2Tx–MXene material with excellent MA performance and tunable frequency band can be successfully fabricated with a macroscopic structural design and through DIW 3D printing without complex material hybridization and modification, offering broad application prospects by reducing electromagnetic wave radiation and interference.

 

/

返回文章
返回