Cite this article as:

Li Wang, Fuying Wu, Daifen Chen, Ting Bian, Petr Senin, and Liuting Zhang, Amorphous scaly high-entropy borides with electron traps for efficient catalysis in solid-state hydrogen storage, Int. J. Miner. Metall. Mater., (2025). https://doi.org/10.1007/s12613-024-3033-2
Li Wang, Fuying Wu, Daifen Chen, Ting Bian, Petr Senin, and Liuting Zhang, Amorphous scaly high-entropy borides with electron traps for efficient catalysis in solid-state hydrogen storage, Int. J. Miner. Metall. Mater., (2025). https://doi.org/10.1007/s12613-024-3033-2
引用本文 PDF XML SpringerLink

具有电子陷阱的非晶鳞片状高熵硼化物在固态储氢中的高效催化作用

摘要: MgH2作为优秀的氢能源载体具有诸多优点,但其吸放氢温度较高限制了实际应用,目前通过催化的方法可以很好地改善其吸放氢性能。过渡金属与B元素之间存在轨道杂化作用,且B元素具有电子阱效应,因此过渡金属硼化物被认为是极具潜力的能源催化材料。本研究通过简单的还原法,设计并制备出一种具有电子陷阱的非晶态鳞片状高熵硼化物(HEB),催化改善氢化镁(MgH2)的储氢性能。在放氢性能方面,添加了10wt% HEB的MgH2起始脱氢温度降至 187.4°C;此外,该复合材料还展现出优异的等温动力学性能,在270°C的温度下,15分钟内可实现完全放氢,放氢量为6.69wt% H2,且MgH2 + 10wt% HEB的活化能从(212.78 ± 3.93) kJ/mol 降至(65.04 ± 2.81 )kJ/mol。MgH2 + 10wt% HEB在吸氢性能方面表现优秀,复合材料可在21.5°C下吸氢,且在75°C条件下,50分钟内即可实现5.02wt%的吸氢容量。在可逆储氢容量测试中,经过30次循环后,该复合材料仍可以保持97%的可逆储氢容量(6.47wt%)。结合微观结构表征结果与储氢性能数据,本研究提出了相应的催化机理:在球磨过程中,鳞片状高熵硼化物在MgH2表面铆定了大量异质活性位点;在 “鸡尾酒效应”(cocktail effect)及金属硼化物轨道杂化作用的共同驱动下,这些丰富的活性位点稳定地促进了MgH2的储氢性能。

 

Amorphous scaly high-entropy borides with electron traps for efficient catalysis in solid-state hydrogen storage

Abstract: Owing to the orbital hybridization between the transition metal and the B element and the electron-trapping effect of the B element, transition metal borides are considered very promising materials for energy catalysis. In this work, an amorphous scaly high-entropy boride (HEB) with electron traps was designed and fabricated via a facile reduction method to improve the hydrogen storage properties of magnesium hydride (MgH2). For dehydrogenation, the onset temperature of MgH2 + 10wt% HEB was dropped to 187.4°C; besides, the composite exhibited superior isothermal kinetics and the activation energy of the composite was reduced from (212.78 ± 3.93) to (65.04 ± 2.81) kJ/mol. In addition, MgH2 + 10wt% HEB could absorb hydrogen at 21.5°C, and 5.02wt% H2 was charged in 50 min at 75°C. For reversible hydrogen storage capacity tests, the composite maintained a retention rate of 97% with 6.47wt% hydrogen capacity after 30 cycles. Combining microstructure evidence with hydrogen storage performance, the catalytic mechanism was proposed. During ball milling, scaly high-entropy borides riveted a large number of heterogeneous active sites on the surface of MgH2. Driven by the cocktail effect as well as the orbital hybridization of metal borides, numerous active sites steadily enhanced the hydrogen storage reactions in MgH2.

 

/

返回文章
返回