Cite this article as:

Zhifeng Zhang, Daming Tong, Xingyun Yang, Xiaofang Wang, Lizhan Han, Guanghua Yan, Chuanwei Li, and Jianfeng Gu, In-situ research on tensile deformation and microvoid formation in a nuclear pressure vessel steel, Int. J. Miner. Metall. Mater., (2025). https://doi.org/10.1007/s12613-024-3043-0
Zhifeng Zhang, Daming Tong, Xingyun Yang, Xiaofang Wang, Lizhan Han, Guanghua Yan, Chuanwei Li, and Jianfeng Gu, In-situ research on tensile deformation and microvoid formation in a nuclear pressure vessel steel, Int. J. Miner. Metall. Mater., (2025). https://doi.org/10.1007/s12613-024-3043-0
引用本文 PDF XML SpringerLink

核电压力容器用钢拉伸变形及微孔洞形成的原位研究

摘要: 目前SA508 Gr.3钢仍然是制造核电压力容器的主要材料,因此研究钢种的韧性断裂机制,特别是微孔洞的形成及其与显微组织的交互作用规律,对于核电压力容器的可靠性评估具有重要意义。本文采用原位数字图像技术和原位电子背散射衍射(EBSD)技术,对SA508 Gr.3钢的拉伸变形行为及微孔洞形成机制开展研究工作。结果表明,淬火组织为上贝氏体和粒状贝氏体的混合组织,其抗拉强度高达~795 MPa,延伸率约为25%。经回火处理后,贝氏体–铁素体亚单元界面处形成长棒状碳化物,而原奥氏体晶界上则出现聚集的碳化物颗粒。回火后抗拉强度降至~607 MPa,延伸率提升至33.0%,颈缩区的局部应变高达191.0%。原位EBSD结果表明,贝氏体–铁素体中的应变局部化导致晶格旋转和位错塞积,进而在马氏体–奥氏体岛状组织和碳化物处产生应力集中。因此,淬火钢中微孔洞主要通过分布有马氏体–奥氏体岛的原奥氏体晶界开裂形成,而回火钢中微孔洞则主要起源于长棒状碳化物的断裂及碳化物聚集处原奥氏体晶界的开裂。淬火与回火试样断口的韧窝形貌表明断裂机制均为微孔洞聚合导致的韧性断裂。

 

In-situ research on tensile deformation and microvoid formation in a nuclear pressure vessel steel

Abstract: Tensile deformation and microvoid formation of quenched and tempered SA508 Gr.3 steel were studied using an in-situ digital image correlation technique and in-situ electron backscatter diffraction (EBSD) measurements. The quenched steel with a mixture of upper bainite and granular bainite exhibited a high ultimate tensile strength (UTS) of ~795 MPa and an elongation of ~25%. After tempering, long-rod carbides and accumulated carbide particles were formed at the interface of bainite–ferrite subunits and prior austenite grain boundaries (PAGBs), respectively. The UTS of the tempered steel decreased to ~607 MPa, whereas the total elongation increased to 33.0% with a local strain of 191.0% at the necked area. In-situ EBSD results showed that strain localization in the bainite–ferrite produced lattice rotation and dislocation pileup, thus leading to stress concentration at the discontinuities (e.g., M–A islands and carbides). Consequently, the decohesion of PAGBs dotted with M–A islands was the dominant microvoid initiation mechanism in the quenched steel, whereas microvoids primarily initiated through the fracturing of long-rod carbides and the decohesion of PAGBs with carbides aggregation in the tempered steel. The fracture surfaces for both the quenched and tempered specimens featured dimples, indicating the ductile failure mechanism caused by microvoid coalescence.

 

/

返回文章
返回