Enhancing mineral processing with deep learning: Automated quartz identification using thin section images

Gökhan Külekçi, Kemal Hacıefendioğlu, Hasan Basri Başağa

图(18)  /  表(1)

分享

计量
  • 文章访问数:  238
  • HTML全文浏览量:  56
  • PDF下载量:  31
  • 被引次数: 0

目录

Cite this article as:

Gökhan Külekçi, Kemal Hacıefendioğlu, and Hasan Basri Başağa, Enhancing mineral processing with deep learning: Automated quartz identification using thin section images, Int. J. Miner. Metall. Mater., 32(2025), No. 4, pp.802-816. https://dx.doi.org/10.1007/s12613-024-3048-8
Gökhan Külekçi, Kemal Hacıefendioğlu, and Hasan Basri Başağa, Enhancing mineral processing with deep learning: Automated quartz identification using thin section images, Int. J. Miner. Metall. Mater., 32(2025), No. 4, pp.802-816. https://dx.doi.org/10.1007/s12613-024-3048-8
引用本文 PDF XML SpringerLink
研究论文

利用深度学习提升矿物加工效率:基于薄片图像的石英自动化识别

    通信作者:

    Gökhan Külekçi E-mail: gokhankulekci@gmail.com

石英因其广泛的分布和重要的工业价值,其精确识别在矿物学和地质学中至关重要。传统的石英薄片鉴定方法耗时长且需要高度的专业知识,而且常常因其他矿物的共存而变得复杂。本研究提出了一种新颖的方法,利用深度学习与高光谱成像技术相结合来自动识别石英矿。采用四种先进的深度学习模型——PSPNet、U-Net、FPN和LinkNet,在效率和准确性方面取得了显著进步。这些模型中,PSPNet表现出优越的性能,获得了最高的IoU(Intersection over union)分数,并在复杂场景下也展现出在石英矿分割方面的可靠性。本研究的数据集来自20个岩石样本的120个薄片共2470张高光谱图像。模型训练采用了专家审核掩膜,确保了分割结果的鲁棒性。这种自动方法不仅加快了识别过程,还提高了可靠性,为地质学家提供了一个有实用价值的工具,推动矿物学分析领域的发展。

 

Research Article

Enhancing mineral processing with deep learning: Automated quartz identification using thin section images

Author Affilications
    Corresponding author:

    Gökhan Külekçi      E-mail: gokhankulekci@gmail.com; gkulekci@gumushane.edu.tr

  • Received: 19 August 2024; Revised: 17 November 2024; Accepted: 18 November 2024; Available online: 19 November 2024

The precise identification of quartz minerals is crucial in mineralogy and geology due to their widespread occurrence and industrial significance. Traditional methods of quartz identification in thin sections are labor-intensive and require significant expertise, often complicated by the coexistence of other minerals. This study presents a novel approach leveraging deep learning techniques combined with hyperspectral imaging to automate the identification process of quartz minerals. The utilizied four advanced deep learning models—PSPNet, U-Net, FPN, and LinkNet—has significant advancements in efficiency and accuracy. Among these models, PSPNet exhibited superior performance, achieving the highest intersection over union (IoU) scores and demonstrating exceptional reliability in segmenting quartz minerals, even in complex scenarios. The study involved a comprehensive dataset of 120 thin sections, encompassing 2470 hyperspectral images prepared from 20 rock samples. Expert-reviewed masks were used for model training, ensuring robust segmentation results. This automated approach not only expedites the recognition process but also enhances reliability, providing a valuable tool for geologists and advancing the field of mineralogical analysis.

 

  • [1]

    W.T. Chen, X.J. Li, and L.Z. Wang, Remote Sensing Intelligent Interpretation for Mine Geological Environment : From Land Use and Land Cover Perspective, Springer Nature, Singapore, 2022.

    [2]

    M. Tian, K. Ma, Z.H. Liu, Q.J. Qiu, Y.J. Tan, and Z. Xie, Recognition of geological legends on a geological profile via an improved deep learning method with augmented data using transfer learning strategies, Ore Geol. Rev., 153(2023), art. No. 105270. DOI: 10.1016/j.oregeorev.2022.105270

    [3]

    N. Agrawal, H. Govil, S. Chatterjee, G. Mishra, and S. Mukherjee, Evaluation of machine learning techniques with AVIRIS–NG dataset in the identification and mapping of minerals, Adv. Space Res., 73(2024), No. 2, p. 1517. DOI: 10.1016/j.asr.2022.09.018

    [4]

    H.J. Wang, Intelligent identification of logging cuttings based on deep learning, Energy Rep., 8(2022), p. 1. DOI: 10.1016/j.egyr.2022.10.049

    [5]

    N. Agrawal, H. Govil, G. Mishra, M. Gupta and P.K. Srivastava, Evaluating the performance of prisma shortwave infrared imaging sensor for mapping hydrothermally altered and weathered minerals using the machine learning paradigm, Remote Sens., 15(2023), No. 12, p. 3133. DOI: 10.3390/rs15123133

    [6]

    A. Gomez-Flores, S. Ilyas, G.W. Heyes, and H. Kim, A critical review of artificial intelligence in mineral concentration, Miner. Eng., 189(2022), art. No. 107884. DOI: 10.1016/j.mineng.2022.107884

    [7]

    X. Liu, V. Chandra, A.I. Ramdani, R. Zuhlke, and V. Vahrenkamp, Using deep-learning to predict Dunham textures and depositional facies of carbonate rocks from thin sections, Geoenergy Sci. Eng., 227(2023), art. No. 211906. DOI: 10.1016/j.geoen.2023.211906

    [8]

    R. Pires de Lima, D. Duarte, C. Nicholson, R. Slatt, and K.J. Marfurt, Petrographic microfacies classification with deep convolutional neural networks, Comput. Geosci., 142(2020), art. No. 104481. DOI: 10.1016/j.cageo.2020.104481

    [9]

    N. Saxena, R.J. Day-Stirrat, A. Hows, and R. Hofmann, Application of deep learning for semantic segmentation of sandstone thin sections, Comput. Geosci., 152(2021), art. No. 104778. DOI: 10.1016/j.cageo.2021.104778

    [10]

    R.G. Zuo, Y.H. Xiong, J. Wang, and E.J.M. Carranza, Deep learning and its application in geochemical mapping, Earth Sci. Rev., 192(2019), p. 1. DOI: 10.1016/j.earscirev.2019.02.023

    [11]

    W.W. Chen, D.Q. Tong, S.C. Zhang, X.L. Zhang, and H.M. Zhao, Local PM10 and PM2.5 emission inventories from agricultural tillage and harvest in northeastern China, J. Environ. Sci., 57(2017), p. 15. DOI: 10.1016/j.jes.2016.02.024

    [12]

    Z.H. Xu, W. Ma, P. Lin, and Y.L. Hua, Deep learning of rock microscopic images for intelligent lithology identification: Neural network comparison and selection, J. Rock Mech. Geotech. Eng., 14(2022), No. 4, p. 1140. DOI: 10.1016/j.jrmge.2022.05.009

    [13]

    W.T. Chen, S.B. Ouyang, J.W. Yang, X.J. Li, G.D. Zhou, and L.Z. Wang, JAGAN: A framework for complex land cover classification using Gaofen-5 AHSI images, IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens., 15(2022), p. 1591. DOI: 10.1109/JSTARS.2022.3144339

    [14]

    D. Ali and S. Frimpong, Artificial intelligence, machine learning and process automation: Existing knowledge frontier and way forward for mining sector, Artif. Intell. Rev., 53(2020), No. 8, p. 6025. DOI: 10.1007/s10462-020-09841-6

    [15]

    T. Long, Z.B. Zhou, G. Hancke, Y. Bai, and Q. Gao, A review of artificial intelligence technologies in mineral identification: Classification and visualization, J. Sens. Actuator Network, 11(2022), No. 3, art. No. 50. DOI: 10.3390/jsan11030050

    [16]

    T. Sun, H. Li, K.X. Wu, F. Chen, Z. Zhu, and Z.J. Hu, Data-driven predictive modelling of mineral prospectivity using machine learning and deep learning methods: A case study from southern Jiangxi province, China, Minerals, 10(2020), No. 2, art. No. 102. DOI: 10.3390/min10020102

    [17]

    H.J. Zhao, K.W. Deng, N. Li, Z.W. Wang, and W. Wei, Hierarchical spatial-spectral feature extraction with long short term memory (LSTM) for mineral identification using hyperspectral imagery, Sensors, 20(2020), No. 23, art. No. 6854. DOI: 10.3390/s20236854

    [18]

    N. Agrawal and H. Govil, A deep residual convolutional neural network for mineral classification, Adv. Space Res., 71(2023), No. 8, p. 3186. DOI: 10.1016/j.asr.2022.12.028

    [19]

    Y.S. Chen, Z.H. Lin, X. Zhao, G. Wang, and Y.F. Gu, Deep learning-based classification of hyperspectral data, IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens., 7(2014), No. 6, p. 2094. DOI: 10.1109/JSTARS.2014.2329330

    [20]

    D.Y. Li, Z.D. Liu, Q.Q. Zhu, C.X. Zhang, P. Xiao, and J.Y. Ma, Quantitative identification of mesoscopic failure mechanism in granite by deep learning method based on SEM images, Rock Mech. Rock Eng., 56(2023), No. 7, p. 4833. DOI: 10.1007/s00603-023-03307-1

    [21]

    Z.D. Liu, D.Y. Li, Q.Q. Zhu, C.X. Zhang, J.Y. Ma, and J.J. Zhao, Intelligent method to experimentally identify the fracture mechanism of red sandstone, Int. J. Miner. Metall. Mater., 30(2023), No. 11, p. 2134. DOI: 10.1007/s12613-023-2668-8

    [22]

    E.J.Y. Koh, E. Amini, G.J. McLachlan, and N. Beaton, Utilising convolutional neural networks to perform fast automated modal mineralogy analysis for thin-section optical microscopy, Miner. Eng., 173(2021), art. No. 107230. DOI: 10.1016/j.mineng.2021.107230

    [23]

    H. Liu, Y.L. Ren, X. Li, et al., Rock thin-section analysis and identification based on artificial intelligent technique, Pet. Sci., 19(2022), No. 4, p. 1605. DOI: 10.1016/j.petsci.2022.03.011

    [24]

    W.L. Chen, C.N. Ji, D. Xu, and N. Srinil, Wake patterns of freely vibrating side-by-side circular cylinders in laminar flows, J. Fluids Struct., 89(2019), p. 82. DOI: 10.1016/j.jfluidstructs.2019.02.013

    [25]

    T.E. Oliphant, Guide to NumPy, [2024–08–20], https://csc.ucdavis.edu/~chaos/courses/nlp/Software/NumPyBook.pdf

    [26]

    J.D. Hunter, Matplotlib: A 2D graphics environment, Comput. Sci. Eng., 9(2007), No. 3, p. 90. DOI: 10.1109/MCSE.2007.55

    [27]

    Keras-Resources, GitHub [2024–08–20], https://github.com/fchollet/keras-resources.

    [28]

    Segmentation Models, GitHub [2024–08–20], https://github.com/qubvel/segmentation_models.

    [29]

    H.S. Zhao, J.P. Shi, X.J. Qi, X.G. Wang, and J.Y. Jia, Pyramid scene parsing network, [in] 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR ), Honolulu, 2017, p. 6230.

    [30]

    O. Ronneberger, P. Fischer, and T. Brox, U-net: Convolutional networks for biomedical image segmentation, [in] Medical Image Computing and Computer-assisted Intervention—MICCAI 2015 : 18th International Conference, Munich, 2015, p. 234.

    [31]

    T.Y. Lin, P. Dollár, R. Girshick, K.M. He, B. Hariharan, and S. Belongie, Feature pyramid networks for object detection, [in] 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR ), Honolulu, 2017, p. 936.

    [32]

    A. Chaurasia and E. Culurciello, LinkNet: Exploiting encoder representations for efficient semantic segmentation, [in] 2017 IEEE Visual Communications and Image Processing (VCIP ), St. Petersburg, 2017, p. 1.

    [33]

    J.X. Hu, L. Li, Y.J. Lin, F.G. Wu, and J.S. Zhao, A comparison and strategy of semantic segmentation on remote sensing images, [in] 15th International Conference on Natural Computation , Fuzzy Systems and Knowledge Discovery, Kunming, 2019, p. 21.

    [34]

    K.M. He, X.Y. Zhang, S.Q. Ren, and J. Sun, Deep residual learning for image recognition, [in] 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR ), Las Vegas, 2016, p. 770.

Relative Articles

Int. J. Miner. Metall. Mater., 2023, 30(8): 1573-1583.

PDF View details

肖柏林, 苗胜军, 夏道洪, 黄华桃, 张靖宇. 基于LSTM深度学习网络的充填管道运行状态检测 [J]. 矿物冶金与材料学报(英文版). DOI: 10.1007/s12613-022-2560-y

View details

李飞飞, 何安瑞, 宋勇, 王正, 徐小青, 张世伟, 强毅, 刘超. 复杂制造系统中的热轧带钢力学性能预测的深度学习模型 [J]. 矿物冶金与材料学报(英文版). DOI: 10.1007/s12613-022-2536-y

View details

Int. J. Miner. Metall. Mater., 2023, 30(1): 156-165.

PDF View details

徐钢, 何金珊, 吕志民, 黎敏, 徐金梧. 利用深度学习对深冲钢机械性能的预测 [J]. 矿物冶金与材料学报(英文版). DOI: 10.1007/s12613-022-2547-8

View details

Peng Xing, Bao-zhong Ma, Peng Zeng, Cheng-yan Wang, Ling Wang, Yong-lu Zhang, Yong-qiang Chen, Shuo Wang, Qiu-yin Wang. Deep cleaning of a metallurgical zinc leaching residue and recovery of valuable metals [J]. 矿物冶金与材料学报(英文版). DOI: 10.1007/s12613-017-1514-2

View details

Chengxiang Yang, Zhouquan Luo, Guobin Hu, Xiaoming Liu. Application of a microseismic monitoring system in deep mining [J]. 矿物冶金与材料学报(英文版). DOI: 10.1016/S1005-8850(07)60002-4

View details

Int. J. Miner. Metall. Mater., 2002, 9(3): 161-165.

PDF View details

Jiling Mao, Yanhua Shen, Jiang Liu, Sheng Ling. Simulative analysis for deep seabed mining lifting systems [J]. 矿物冶金与材料学报(英文版).

View details

Meifeng Cai, Jinan Wang, Shuanghong Wang. Prediction of Rock Burst with Deep Mining Excavation in Linglong Gold Mine [J]. 矿物冶金与材料学报(英文版).

View details

Int. J. Miner. Metall. Mater., 1999, 6(1): 4-7.

PDF View details

Yan Feng, Haoran Li, Wenming Zhang. Future Trends of Deep Sea Bed Mining Technology [J]. 矿物冶金与材料学报(英文版).

View details

/

返回文章
返回