留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
数据统计

分享

计量
  • 文章访问数:  21
  • HTML全文浏览量:  9
  • PDF下载量:  2
  • 被引次数: 0
Lulu Liu, Mengmeng Lin, Linan Wang, Zhen Liu, Li Guan, Quanlin Li, Hongxia Lu, Zhongyi Wang, Biao Zhao,  and Rui Zhang, Adaptable liquid metal putty for high electromagnetic shielding, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-3050-1
Cite this article as:
Lulu Liu, Mengmeng Lin, Linan Wang, Zhen Liu, Li Guan, Quanlin Li, Hongxia Lu, Zhongyi Wang, Biao Zhao,  and Rui Zhang, Adaptable liquid metal putty for high electromagnetic shielding, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-3050-1
引用本文 PDF XML SpringerLink
  • Research Article

    Adaptable liquid metal putty for high electromagnetic shielding

    + Author Affiliations
    • The development of stretchable conductors with high deformation, conductivity, and thermal conductivity using liquid metal (LM) has sparked widespread discussion in the fields of flexible electronics, electromagnetic interference (EMI),and multifunctional materials. However, directly coating LMs on soft polymer substrates to form desirable shielding materials is still a challenge due to their huge surface tension and weak wettability. In this paper, A gallium-based composite material in paste form called LMP is prepared by fabricating mixture with Ga and diamond non-metallic particles through employing ultrasonic fragmentation. The resulting LMP exhibits both soft and hard properties at various temperatures, allowing it to be molded into specific shapes according to the application needs. This composite can be easily coated onto polymer substrates, such as thermoplastic polyurethane elastomer (TPU), to create the liquid metal composite putty film (LMP-TPU).LMP-TPU exhibits an impressive shape deformation capacity of 1100%, demonstrating exceptional tensile properties and achieving electromagnetic shielding effectiveness of up to 52 dB. Furthermore, it retains an ultra-high conductivity of 20000 S/m, even under a strain of 600%. This further makes it a highly competitive new multifunctional material.

    • loading

    Catalog


    • /

      返回文章
      返回