Cite this article as:

Wenpeng Li, Panzhi Wang, Qing Wang, Jiadian Yang, Jingjing Ruan, Xin Zhou, Lilong Zhu, Liang Jiang, and Hua Zhang, Effect of post-dynamic recrystallization on microstructure evolution of GH141 superalloy after gradient thermal deformation, Int. J. Miner. Metall. Mater., (2025). https://doi.org/10.1007/s12613-024-3074-6
Wenpeng Li, Panzhi Wang, Qing Wang, Jiadian Yang, Jingjing Ruan, Xin Zhou, Lilong Zhu, Liang Jiang, and Hua Zhang, Effect of post-dynamic recrystallization on microstructure evolution of GH141 superalloy after gradient thermal deformation, Int. J. Miner. Metall. Mater., (2025). https://doi.org/10.1007/s12613-024-3074-6
引用本文 PDF XML SpringerLink

后动态再结晶对梯度热变形GH141高温合金组织演变的影响

摘要: GH141具有出色的抗拉强度和持久蠕变强度、优异的抗氧化性能及疲劳性能,是制造具有特殊抗氧化要求的航空航天发动机部件的理想材料。然而,GH141高温合金环轧件在生产过程中常常会出现微观组织不均匀的问题。本研究旨在探讨后动态再结晶处理对梯度热变形GH141高温合金微观组织演变的影响,以解决微观组织不均匀的问题。在不同温度下对双锥台(DC)样品进行了压缩测试,以评估梯度应变对样品内部微观组织变化的影响。结果表明,梯度应变在DC样品中引起了相当大的微观组织不均匀性。而延迟保温促进了后动态再结晶(PDRX),并在经历大梯度应变的DC样品中促进了完全再结晶,从而在整个样品中形成了均匀的晶粒组织。在相对较低的压缩温度下,动态再结晶(DRX)主要由连续动态再结晶(CDRX)驱动。随着变形温度的升高,DRX机制从以CDRX为主转变为以不连续动态再结晶(DDRX)为主。在延迟保温过程中,PDRX主要由静态再结晶机制主导,同时出现了元动态再结晶(MDRX)机制。此外,还观察到了孪晶诱导再结晶形核的PDRX机制。

 

Effect of post-dynamic recrystallization on microstructure evolution of GH141 superalloy after gradient thermal deformation

Abstract: The GH141 superalloy ring-rolled parts often face microstructural inhomogeneity during production. This work investigated the effect of post-dynamic recrystallization on the microstructural evolution of GH141 superalloy after gradient thermal deformation to solve the problem of microstructural inhomogeneity. Compression tests involving double cone (DC) samples were conducted at various temperatures to assess the effect of gradient strain on internal grain microstructure variation, which ranged from the rim to the center of the samples. The results demonstrate considerable microstructural inhomogeneity induced by gradient strain in the DC samples. The delay in heat preservation facilitated post-dynamic recrystallization (PDRX) and promoted extensive recrystallization in the DC samples experiencing large gradient strain, which resulted in a homogeneous grain microstructure throughout the samples. During compression at a relatively low temperature, dynamic recrystallization (DRX) was predominantly driven by continuous dynamic recrystallization (CDRX). As the deformation temperature increased, the DRX mechanism changed from CDRX-dominated to being dominated by discontinuous dynamic recrystallization (DDRX). During the delay of the heat preservation process, PDRX was dominated by a static recrystallization mechanism, along with the occurrence of meta-dynamic recrystallization (MDRX) mechanisms. In addition, the PDRX mechanism of twin-induced recrystallization nucleation was observed.

 

/

返回文章
返回