Cite this article as:

Junling Che, Jiaojiao Yu, Tong Xu, Junchao Ma, Kang Yu, Jian Qin, Wei Ren, Yanmin Jia, and Xifei Li, Sodium storage properties of Fe, Ni-bimetallic doped carbon-modified NaTi2(PO4)3, Int. J. Miner. Metall. Mater., (2025). https://doi.org/10.1007/s12613-025-3087-9
Junling Che, Jiaojiao Yu, Tong Xu, Junchao Ma, Kang Yu, Jian Qin, Wei Ren, Yanmin Jia, and Xifei Li, Sodium storage properties of Fe, Ni-bimetallic doped carbon-modified NaTi2(PO4)3, Int. J. Miner. Metall. Mater., (2025). https://doi.org/10.1007/s12613-025-3087-9
引用本文 PDF XML SpringerLink

铁镍双金属掺杂碳修饰 NaTi2(PO4)3 的储钠性能研究

摘要: NaTi2(PO4)3 (NTP)作为一种具NASICON结构、三维开放骨架和合适的负电压窗口的材料,被认为是较具潜力的水系钠离子电池 (ASIB) 负极材料。然而,NTP较差的固有导电性阻碍了其在ASIB中的应用。为此,设计了双金属掺杂碳材料并结合溶胶-凝胶法制备了 NaTi2(PO4)3–C–FeNi (NTP–C–FeNi) 复合材料。这种双金属掺杂碳复合NTP材料不仅具有大的比表面积,而且有效提高了导电性并促进了Na+的快速迁移。倍率性能测试后,NTP–C–FeNi在0.1 A·g−1仍可保留116.75 mAh·g−1的可逆容量,占首次循环容量的95.9 %。在1.5 A·g−1的电流密度下循环500次后,循环容量保持率为85.3 %。电化学性能的提升归因于FeNi–C掺杂拓宽了Na+的嵌入/脱出通道,加速了Na+的脱嵌,而碳包覆则有效促进了电极电荷的转移。结果表明,双金属掺杂碳复合材料NaTi2(PO4)3在新型水系钠离子电池体系中具有应用潜力。

 

Sodium storage properties of Fe, Ni-bimetallic doped carbon-modified NaTi2(PO4)3

Abstract: NaTi2(PO4)3 (NTP) is a material with a NASICON structure, a three-dimensional open type skeleton, and suitable negative voltage window, which is widely regarded as a magnetic anode material for aqueous sodium ion batteries (ASIBs). However, NTP’s intrinsically poor conductivity hampers their use in ASIBs. Herein, bimetallic doped carbon material was designed and combined with the sol–gel method to prepare NaTi2(PO4)3–C–FeNi (NTP–C–FeNi) composite materials. This bimetallic doped carbon composite NTP material not only has a large specific surface area, but also effectively improves conductivity and promotes rapid migration of Na+. Following the rate performance test, NTP–C–FeNi retained a reversible capacity of 116.75 mAh·g−1 at 0.1 A·g−1, representing 95.9% of the first cycle capacity. After 500 cycles at 1.5 A·g−1, the cycle fixity was 85.3%. The enhancement of electrochemical performance may owe to the widening of pathways and acceleration of Na+ insertion/extraction facilitated by FeNi–C doping, while the carbon coating effectively promotes electrode charge transfer. The results indicate that the bimetallic doped carbon composite NaTi2(PO4)3 holds potential for practical applications in novel aqueous sodium ion battery systems.

 

/

返回文章
返回