Cite this article as:

Yuxuan Gao, Chenglong Ma, Yu Zhang, Jin Bai, Zihang Zhu, Jie Wang, and Hailei Zhao, Red phosphorus/Ti3C2 MXene nanocomposite and flexible free-standing electrode for sodium-ion storage, Int. J. Miner. Metall. Mater., (2025). https://doi.org/10.1007/s12613-025-3091-0
Yuxuan Gao, Chenglong Ma, Yu Zhang, Jin Bai, Zihang Zhu, Jie Wang, and Hailei Zhao, Red phosphorus/Ti3C2 MXene nanocomposite and flexible free-standing electrode for sodium-ion storage, Int. J. Miner. Metall. Mater., (2025). https://doi.org/10.1007/s12613-025-3091-0
引用本文 PDF XML SpringerLink

红磷/Ti3C2 MXene纳米复合材料与柔性自支撑电极的储钠性能研究

摘要: 红磷(RP)因其高理论比容量和资源丰富的优势,被视为钠离子电池(SIBs)极具潜力的负极候选材料。然而,RP循环过程中较大的体积变化及其较低的本征电子电导率严重制约其电化学性能的发挥。本研究通过简易化学沉淀法制备了红磷纳米颗粒均匀分散且紧密附着于二维Ti3C2纳米片表面的纳米复合材料(NRP/Ti3C2)。Ti3C2纳米片的引入可有效防止材料制备过程中RP纳米颗粒的团聚和生长。同时,柔性Ti3C2纳米片不仅可作为支撑体有效缓解钠离子脱嵌过程中RP的体积变化,还能够构建快速电子传输网络。此外,红磷纳米化可缩短离子扩散路径,进一步改善电极反应动力学。电化学测试表明:NRP/Ti3C2复合负极在0.1 A·g−1和0.5 A·g−1电流密度下分别具有862 mAh·g−1和576 mAh·g−1的可逆比容量,且在0.1 A·g−1电流密度下经100次循环后,电极容量仍可保持525.2 mAh·g−1。此外,所制备的自支撑NRP/Ti3C2电极展现出~2.21 mAh·cm−2的面容量和稳定的电化学循环性能,这为开发高性能RP基负极,实现高能量密度钠离子电池提供了有效的指导。

 

Red phosphorus/Ti3C2 MXene nanocomposite and flexible free-standing electrode for sodium-ion storage

Abstract: Red phosphorus (RP) has been recognized as a promising anode candidate for sodium-ion batteries (SIBs) due to its high theoretical capacity and natural abundance. However, the electrochemical performance of RP is restricted by the critical issues of the large volume variation upon cycling and the low intrinsic electronic conductivity. Herein, a nanocomposite with the structure of well-dispersed RP nanoparticles intimately attached to the surface of two-dimensional Ti3C2 nanosheets (NRP/Ti3C2) is prepared by a facile chemical precipitation method. The introduction of Ti3C2 nanosheets can effectively prevent the RP nano-grains/clusters from agglomeration and growth in the synthesis process. Besides, the flexible Ti3C2 sheets can not only function as the mechanical support for accommodating the volume change of RP upon Na+ uptake/release process, but also provide an efficient conductive network for electron transportation. Moreover, the shortened ions diffusion distance enabled by the nano feature of RP further favors the electrode reaction kinetics. When employed as anode for SIBs, the synthesized NRP/Ti3C2 composite exhibits a reversible capacity of ~862 and 576 mAh·g−1 at 0.1 and 0.5 A·g−1, respectively, as well as a maintained capacity of 525.2 mAh·g−1 after 100 cycles at 0.1 A·g−1. In addition, the fabricated free-standing NRP/Ti3C2 electrode with a capacity of ~2.21 mAh·cm−2 and stable electrochemical cycling provides a valid guide toward high-performance RP-based anodes for realizing SIBs with high energy density.

 

/

返回文章
返回