Cite this article as:

Touqeer Ahmad, Zhengxin Zhu, Muhammad Sajid, Weiping Wang, Yirui Ma, Mohsin Ali, Nawab Ali Khan, Shuang Liu, Zuodong Zhang, and Wei Chen, Waste asphalt derived hierarchically porous carbon for high-performance electrocatalytic hydrogen gas capacitors, Int. J. Miner. Metall. Mater.,(2025). https://dx.doi.org/10.1007/s12613-025-3098-6
Touqeer Ahmad, Zhengxin Zhu, Muhammad Sajid, Weiping Wang, Yirui Ma, Mohsin Ali, Nawab Ali Khan, Shuang Liu, Zuodong Zhang, and Wei Chen, Waste asphalt derived hierarchically porous carbon for high-performance electrocatalytic hydrogen gas capacitors, Int. J. Miner. Metall. Mater.,(2025). https://dx.doi.org/10.1007/s12613-025-3098-6
引用本文 PDF XML SpringerLink

废弃沥青衍生分级多孔碳用于高性能电催化氢气电容器

摘要: 随着对储能器件需求的激增,材料的成本和可用性仍是延缓其工业应用的主要瓶颈。将废旧沥青转换成高性能电极材料,因其具有规避能源及环境问题的潜能具有重要研究意义。本研究报道了一种沥青基介孔碳的可控制备,并将其作为电化学催化氢气电容器(EHGC)的活性材料。分级多孔碳(HPC)具有1943.4 m2·g−1的高比表面积,能够在pH通用水系电解液中稳定工作。该材料在中性电解液中比能量与功率密度分别可达57 Wh·kg−1 和554 W·kg−1,在2 M磷酸(H3PO4)电解液中则分别为52 Wh·kg−1和657 W·kg−1。此外,利用拉曼光谱和X射线光电子能谱(XPS)揭示了HPC–EHGC的电荷存储机制,其结果进一步证实了反应过程的高度可逆性。此外,组装后的HPC-EHGC在2 M 磷酸电解液中展现出了卓越的放电比电容(170 F·g−1),同时在10 A·g−1和25°C条件下,经过20000次循环后其电容保持率高达100%。这项工作提出了一个将废旧沥青转化为高性能EHGC碳材料的新方法,该材料的性能优于商业材料。通过同步解决环境浪费问题和推动储能技术,本研究为可持续的材料科学及下一代电池开发做出了重要贡献。

 

Waste asphalt derived hierarchically porous carbon for high-performance electrocatalytic hydrogen gas capacitors

Abstract: Along with the surging demand for energy storage devices, the cost and availability of the materials remain dominant factors in slowing down their industrial application. The repurposing of waste asphalt into high-performance electrode materials is of significant interest, as it holds the potential to circumvent energy and environmental issues. Here, we report the controllable synthesis of asphalt-derived mesoporous carbon as an active material for electrocatalytic hydrogen gas capacitor (EHGC). The hierarchically porous carbon (HPC) with a high surface area of 1943.4 m2·g−1 can operate in pH universal aqueous electrolytes in EHGC. It displays a specific energy and power density of 57 Wh·kg−1 and 554 W·kg−1 in neutral electrolyte as well as 52 Wh·kg−1 and 657 W·kg−1 in 2 M H3PO4. Additionally, the charge storage mechanism of HPC–EHGC is studied with the help of Raman spectroscopy and X-ray photoelectron spectroscopy, and the results further confirm the reversibility of the process. Furthermore, the assembled HPC–EHGC device displays a remarkable discharge capacitance of 170 F·g−1 with an excellent capacitance retention rate of 100% up to 20000 cycles at 10 A·g−1 and 25°C in 2 M H3PO4. This work introduces a novel approach to converting waste asphalt into high-performance carbon for EHGC, achieving superior performance over commercial materials. By simultaneously addressing environmental waste issues and advancing energy storage technology, this study makes a significant contribution to sustainable materials science and next-generation battery development.

 

/

返回文章
返回