Cite this article as:

Mao Chen, Bo Yang, Kaixuan Zhang, Junyu Chen, Yehui Li, Shuangjiang He, and Meilong Hu, Coupling effect of TiO2 and Al2O3 on the structure of CaO–SiO2–MgO–xwt%Al2O3ywt%TiO2 slag systems, Int. J. Miner. Metall. Mater., 32(2025), No. 10, pp.2444-2455. https://doi.org/10.1007/s12613-025-3104-z
Mao Chen, Bo Yang, Kaixuan Zhang, Junyu Chen, Yehui Li, Shuangjiang He, and Meilong Hu, Coupling effect of TiO2 and Al2O3 on the structure of CaO–SiO2–MgO–xwt%Al2O3ywt%TiO2 slag systems, Int. J. Miner. Metall. Mater., 32(2025), No. 10, pp.2444-2455. https://doi.org/10.1007/s12613-025-3104-z
引用本文 PDF XML SpringerLink

TiO2和Al2O3耦合对 CaO–SiO2–MgO–xwt%Al2O3ywt%TiO2渣系结构的影响

摘要: 本研究基于熔渣黏度变化、拉曼光谱及分子动力学方法,分析了 TiO2 和 Al2O3含量对 CaO–SiO2–MgO–xwt%Al2O3ywt%TiO2(14 ≤ x ≤22,0 ≤ y ≤ 10)高炉渣系微观结构的影响。拉曼光谱结果表明,随着 TiO2含量增加,熔渣中复杂硅酸盐结构( \mathrmQ_\mathrmS\mathrmi^3 and \mathrmQ_\mathrmS\mathrmi^2 )逐渐解聚为简单结构( \mathrmQ_\mathrmS\mathrmi^0 and \mathrmQ_\mathrmS\mathrmi^1 );同时,熔渣铝酸盐结构中的 Al–O–Al 键也解聚为简单的Al–O形式,使得硅酸盐与铝酸盐的聚合度均降低。相反,Al2O3含量增加通常会使硅酸盐与铝酸盐的聚合度升高。分子动力学模拟结果表明:Si 和 Al 主要以四面体结构SiO44−和AlO44−存在,而 Ti 主要以简单的五配位TiO56−和六配位 TiO68−形式存在。在该体系中,TiO2表现出碱性,Al2O3则表现出酸性。TiO2的加入会向体系中引入游离氧离子,使桥氧断裂为非桥氧,使得 \mathrmQ_\mathrmS\mathrmi^4 和 \mathrmQ_\mathrmS\mathrmi^3 等复杂结构解聚,从而简化熔渣结构;另一方面,Al2O3含量增加会倾向于捕获或共享体系中的氧离子以形成 AlO44−,促使游离氧聚合成非桥氧,非桥氧进一步聚合成桥氧,进而使 \mathrmQ_\mathrmS\mathrmi^0 和 \mathrmQ_\mathrmS\mathrmi^1 等简单结构聚合,导致熔渣结构更复杂。拉曼光谱分析与分子动力学模拟结果均表明,熔渣网络结构中 SiO44−和 AlO44−的聚合度是决定熔渣流动性的关键因素。

 

Coupling effect of TiO2 and Al2O3 on the structure of CaO–SiO2–MgO–xwt%Al2O3ywt%TiO2 slag systems

Abstract: This study analyzes the influence of TiO2 and Al2O3 contents on the microstructure of CaO–SiO2–MgO–xwt%Al2O3ywt%TiO2 (14 ≤ x ≤ 22, 0 ≤ y ≤ 10) blast furnace slag systems based on the change of slag viscosity, Raman spectroscopy, and molecular dynamics. The Raman spectroscopy results indicate that an increase in TiO2 content leads to the gradual depolymerization of complex silicate structures ( \mathrmQ_\mathrmS\mathrmi^3 and \mathrmQ_\mathrmS\mathrmi^2 ) into simpler structures ( \mathrmQ_\mathrmS\mathrmi^0 and \mathrmQ_\mathrmS\mathrmi^1 ) in the slag. At the same time, the Al–O–Al bonds in the aluminate structures of the slag also depolymerize into simpler Al–O forms, resulting in a decrease in the degree of polymerization of both silicates and aluminates. In contrast, an increase in Al2O3 content generally results in an increased degree of polymerization for the silicates and aluminates. Molecular dynamics simulations of the polymerization and depolymerization processes in the microstructure of the blast furnace slag reveal that Si and Al mainly exist in tetrahedral SiO44− and AlO44−, while Ti mainly exists in the form of simple pentacoordinate TiO56− and hexacoordinate TiO68−. TiO2 exhibits basic properties in this system, whereas Al2O3 demonstrates acidic behavior. The addition of TiO2 introduces free oxide ions into the system, causing the bridging oxygens to break into non-bridging oxygens, leading to the depolymerization of complex structures \mathrmQ_\mathrmS\mathrmi^4 and \mathrmQ_\mathrmS\mathrmi^3 , which simplifies the slag structure. On the other hand, an increase in Al2O3 content tends to capture or share the oxide ions within the system to form AlO44−, resulting in the polymerization of free oxygens into non-bridging oxygens, which further polymerize into bridging oxygens and lead to the consolidation of simple structures \mathrmQ_\mathrmS\mathrmi^0 and \mathrmQ_\mathrmS\mathrmi^1 , resulting in a more complex slag structure. Both Raman spectroscopy analysis and molecular dynamics simulation results indicate that the degree of polymerization of SiO44− and AlO44− in the slag network structure is a crucial factor determining the fluidity of the slag.

 

/

返回文章
返回