Cite this article as:

Yaoxiang Geng, Zhifa Shan, Jiaming Zhang, Tianshuo Wei, and Zhijie Zhang, Densification, microstructure, mechanical properties, and thermal stability of high-strength Ti-modified Al–Si–Mg–Zr aluminum alloy fabricated by laser-powder bed fusion, Int. J. Miner. Metall. Mater., 32(2025), No. 10, pp.2547-2559. https://doi.org/10.1007/s12613-025-3111-0
Yaoxiang Geng, Zhifa Shan, Jiaming Zhang, Tianshuo Wei, and Zhijie Zhang, Densification, microstructure, mechanical properties, and thermal stability of high-strength Ti-modified Al–Si–Mg–Zr aluminum alloy fabricated by laser-powder bed fusion, Int. J. Miner. Metall. Mater., 32(2025), No. 10, pp.2547-2559. https://doi.org/10.1007/s12613-025-3111-0
引用本文 PDF XML SpringerLink

激光粉末床熔制备高强度Ti改性Al−Si−Mg−Zr铝合金的致密度、显微组织、力学性能和热稳定性

摘要: 本研究将微米级不规则形状的Ti颗粒(0.5wt%和1.0wt%)与Al−Si−Mg−Zr基体粉末混合,采用激光粉末床熔融(L-PBF)技术制备了一系列新型Ti改性Al−Si−Mg−Zr合金。结果表明,初生(Al,Si)3(Ti,Zr)纳米颗粒的晶粒细化作用促进了合金中近完全等轴晶的形成。此外,(Al,Si)3(Ti,Zr)纳米粒子的存在抑制了网状富Si亚结构的分解以及胞状α-Al基体中Si纳米颗粒的析出。沉积态0.5wt% Ti合金的极限抗拉强度(UTS)、屈服强度(YS)和伸长率分别为(468 ± 11)MPa、(350 ± 1)MPa和(10.0 ± 1.4)%,与L-PBF成形的Al−Si−Mg−Zr基体合金性能相当,且显著高于传统L-PBF制备的Al−Si−Mg合金。经150°C直接时效处理后,二次纳米颗粒的析出进一步提高了合金强度,其UTS和YS最高分别达到(479 ± 11)MPa和(376 ± 10)MPa。在250°C时效后,由于网状富Si亚结构的分解受到抑制,L-PBF成形Ti/Al−Si−Mg−Zr合金的YS高于基体合金,表现出更优的热稳定性。当时效温度升至300°C时,因富Si组织的分解、基体中固溶元素的析出以及纳米强化相的粗化,合金的UTS和YS分别下降至300 MPa和200 MPa以下,但延伸率显著提高。

 

Densification, microstructure, mechanical properties, and thermal stability of high-strength Ti-modified Al–Si–Mg–Zr aluminum alloy fabricated by laser-powder bed fusion

Abstract: Micrometer-sized, irregularly shaped Ti particles (0.5wt% and 1.0wt%) were mixed with an Al–Si–Mg–Zr matrix powder, and a novel Ti-modified Al–Si–Mg–Zr aluminum alloy was subsequently fabricated via laser-powder bed fusion (L-PBF). The results demonstrated that the introduction of Ti particles promoted the formation of near-fully equiaxed grains in the alloy owing to the strong grain refinement of the primary (Al,Si)3(Ti,Zr) nanoparticles. Furthermore, the presence of (Al,Si)3(Ti,Zr) nanoparticles inhibited the decomposition of Si-rich cell boundaries and the precipitation of Si nanoparticles in the α-Al cells. The ultimate tensile strength (UTS), yield strength (YS), and elongation of the as-built 0.5wt% Ti (0.5Ti) alloy were (468 ± 11), (350 ± 1) MPa, and (10.0 ± 1.4)%, respectively, which are comparable to those of the L-PBF Al−Si−Mg−Zr matrix alloy and significantly higher than those of traditional L-PBF Al−Si−Mg alloys. After direct aging treatment at 150°C, the precipitation of secondary nanoparticles notably enhanced the strength of the 0.5Ti alloy. Specifically, the 0.5Ti alloy achieved a maximum UTS of (479 ± 11) MPa and YS of (376 ± 10) MPa. At 250°C, the YS of the L-PBF Ti/Al−Si−Mg−Zr alloy was higher than that of the L-PBF Al−Si−Mg−Zr matrix alloy due to the retention of Si-rich cell boundaries, indicating a higher thermal stability. As the aging temperature was increased to 300°C, the dissolution of Si-rich cell boundaries, desolvation of solid-solution elements, and coarsening of nanoprecipitates led to a decrease in the UTS and YS of the alloy to below 300 and 200 MPa, respectively. However, the elongation increased significantly.

 

/

返回文章
返回