Cite this article as:

Thura Lin Htet, Sira Sripirommit, Manasbodin Asava-arunotai, Myo Myo Thu, Gasidit Panomsuwan, Ratchatee Techapiesancharoenkij, Pinit Kidkhunthod, Jintara Padchasri, and Oratai Jongprateep, Enhanced nitrite and phosphate detection through Ag-doped TiO2 sensing material, Int. J. Miner. Metall. Mater., 32(2025), No. 9, pp.2280-2293. https://doi.org/10.1007/s12613-025-3119-5
Thura Lin Htet, Sira Sripirommit, Manasbodin Asava-arunotai, Myo Myo Thu, Gasidit Panomsuwan, Ratchatee Techapiesancharoenkij, Pinit Kidkhunthod, Jintara Padchasri, and Oratai Jongprateep, Enhanced nitrite and phosphate detection through Ag-doped TiO2 sensing material, Int. J. Miner. Metall. Mater., 32(2025), No. 9, pp.2280-2293. https://doi.org/10.1007/s12613-025-3119-5
引用本文 PDF XML SpringerLink

通过银掺杂二氧化钛传感材料增强亚硝酸盐和磷酸盐的检测

摘要: 为防止细菌滋生并确保食品安全,通常会使用亚硝酸盐和磷酸盐。然而,体内亚硝酸盐含量过高会增加患胃癌和食道癌的风险,而磷酸盐含量过高则可能增加肾功能障碍和骨质疏松症的发病几率。电化学传感已成为检测亚硝酸盐和磷酸盐的一种可靠技术。本研究基于二氧化钛的传感材料在检测中的应用,通过溶液燃烧技术成功合成了纳米级二氧化钛和银掺杂二氧化钛。采用X射线衍射(XRD)和X射线吸收近边结构(XANES)方法对材料的成分进行了检测,结果表明主要成分为锐钛矿型。掺杂会导致颗粒细化,从而增加了材料的比表面积并提高了电子转移效率,这一点通过电化学阻抗谱(EIS)检测得到了证实。通过循环伏安法评估了材料的电化学行为,结果表明银掺杂二氧化钛材料检测亚硝酸盐时,在约1.372 V的施加电压下发生了显著的氧化反应,而在检测磷酸盐时,主要的还原峰出现在接近–0.48 V的电压下。结果表明,银掺杂二氧化钛材料的检测灵敏度高(亚硝酸钠为2 µA·µM–1·mm–2,磷酸钾为2.1 µA·µM–1·mm–2),检测限较低(亚硝酸钠为0.0052 mmol/L,磷酸钾为0.0045 mmol/L),作为亚硝酸盐和磷酸盐的传感装置材料具有潜在的应用价值。

 

Enhanced nitrite and phosphate detection through Ag-doped TiO2 sensing material

Abstract: To prevent bacterial growth and ensure food safety, common practice involves the use of nitrite and phosphate salts. Nevertheless, elevated nitrite levels in the body can contribute to the development of stomach and esophageal cancers, while excessive phosphate levels may increase the risk of kidney dysfunction and the onset of osteoporosis. Electrochemical sensing has emerged as a reliable technique for detecting nitrites and phosphates. This study specifically focuses on the use of TiO2-based sensing materials for such detection. The synthesis of nanoparticulate TiO2 and Ag-doped TiO2 was successfully achieved through a solution combustion technique. The composition of the materials was examined using X-ray diffraction (XRD) and X-ray absorption near-edge structure (XANES) methods, revealing a predominant anatase composition. Doping resulted in particle refinement, contributing to an increased specific surface area and enhanced electron transfer efficiency, as indicated in the examination by electrochemical impedance spectroscopy (EIS). Cyclic voltammetry (CV) assessed the electrochemical behavior, demonstrating that in nitrite detection, a significant oxidation reaction occurred at an applied voltage of approximately 1.372 V, while in phosphate detection, the main reduction peak occurred at a voltage close to –0.48 V. High sensitivity (2 µA·µM–1·mm–2 for sodium nitrite and 2.1 µA·µM–1·mm–2 for potassium phosphate) and low limits of detection (0.0052 mM for sodium nitrite and 0.0045 mM for potassium phosphate) were observed. Experimental results support the potential use of Ag-doped TiO2 as a sensing device for nitrites and phosphates.

 

/

返回文章
返回