Cite this article as:

Rende Chang, Chengyi Ding, Feng Jiang, Hongming Long, Xuewei Lv, Gang Li, Peng Yuan, Changyou Yu, Mengbo Dai, and Tiejun Chun, Application of high-alumina type calcium ferrite: A new strategy of mineral phase regulation instead of chemical composition regulation in iron ore sintering, Int. J. Miner. Metall. Mater., (2025). https://doi.org/10.1007/s12613-025-3128-4
Rende Chang, Chengyi Ding, Feng Jiang, Hongming Long, Xuewei Lv, Gang Li, Peng Yuan, Changyou Yu, Mengbo Dai, and Tiejun Chun, Application of high-alumina type calcium ferrite: A new strategy of mineral phase regulation instead of chemical composition regulation in iron ore sintering, Int. J. Miner. Metall. Mater., (2025). https://doi.org/10.1007/s12613-025-3128-4
引用本文 PDF XML SpringerLink

高铝型铁酸钙的应用:铁矿烧结工艺物相调控代替成分调控新策略

摘要: 高铝矿因其经济效益被广泛应用于烧结生产,但其高铝含量对烧结矿性能及高炉稳定运行构成挑战。本研究聚焦高铝复合铁酸钙(SFCA)在高铝铁矿烧结中的应用,通过预制复合铁酸钙以相调控替代成分调控,重点研究30wt%、50wt%及100wt% Al2O3替代量对烧结矿质量的改善作用。前期工作已开发出A型与B型两类高铝SFCA,其中A型性能较优。结果表明:随着A型SFCA在原料中替代比例提升,铁酸钙与复合铁酸钙含量增加,而Al2O3、CaO、SiO2及硅酸钙、铁铝酸钙(CaAlxFe2xO4)含量相应降低。扫描电镜与矿相分析表明,经A型SFCA替代的烧结矿主要物相为SFCA与铁铝酸钙(CFA),随替代率提高,铁酸钙含量上升,孔隙率与硅酸盐含量下降。当A型SFCA完全替代Al2O3时,烧结矿抗压强度提升至22.57 MPa,较传统方法提高6.76 MPa;全替代条件下还原度达0.85,较基准值提升0.33(未添加A型与B型SFCA)。本研究提出采用高铝矿、高铝固废与铁钙基固废制备SFCA的经济方案,以降低生产成本并促进工业固废资源化。总体而言,A型SFCA在力学性能、还原性与熔融特性方面均展现显著优势,证实其优化烧结矿性能与降低碳排放的应用潜力,为高铝SFCA的工业化应用奠定了理论与实践基础。

 

Application of high-alumina type calcium ferrite: A new strategy of mineral phase regulation instead of chemical composition regulation in iron ore sintering

Abstract: High-alumina iron ores (Al2O3 content >3.0wt%) are widely utilized in sinter production due to their economic benefits, yet their high alumina content challenges the performance of sinter and the stability of blast furnaces. This study focuses on the application of high-alumina composite calcium ferrites (SFCA) in the sintering of high-alumina iron ores. By prefabricating calcium ferrites, we aimed to substitute phase adjustment for compositional tuning, particularly examining its effects on enhancing sinter quality at 30wt%, 50 wt%, and 100wt% replacement ratios of Al2O3. Previous work developed two types of high-alumina SFCA (A-type and B-type), with A-type demonstrating superior experimental performance. Our results indicate that increasing the proportion of A-type SFCA in the raw materials leads to higher calcium ferrite and composite calcium ferrite contents, while decreasing the proportions of Al2O3, CaO, SiO2, calcium silicate, and calcium alumino-ferrite (CaAlxFe2–xO4). Scanning electron microscopy (SEM) and mineralogical analyses reveal that sinter substituted with A-type SFCA primarily consists of SFCA and calcium ferraluminate (CFA), with increasing calcium ferrite content and decreasing porosity and silicate content as the substitution ratio increases. Complete substitution of Al2O3 with A-type SFCA enhances the compressive strength of the sinters to 22.57 MPa, a 6.76 MPa improvement over traditional methods. With 100wt% substitution, the reducibility reaches 0.85, a 0.33 increase over the baseline (A-type and B-type SFCA are not added). A cost-effective method for SFCA production using high-alumina ores, hazardous waste, and iron-calcium-based solid waste is proposed to lower production costs and promote the recycling of industrial solid waste. A-type SFCA exhibits significant advantages in mechanical properties, reducibility, and melting characteristics, validating its potential in optimizing sinter performance and reducing carbon emissions, thereby laying a theoretical and practical foundation for the industrial application of high-alumina SFCA.

 

/

返回文章
返回