Cite this article as:

Le Zong, Lingxin Li, Lantian Zhang, Xuecheng Jin, Yong Zhang, Wenfeng Yang, Pengfei Liu, Bin Gan, Liujie Xu, Yuanshen Qi, and Wenwen Sun, Processing map for oxide dispersion strengthening Cu alloys based on experimental results and machine learning modelling, Int. J. Miner. Metall. Mater., (2025). https://doi.org/10.1007/s12613-025-3130-x
Le Zong, Lingxin Li, Lantian Zhang, Xuecheng Jin, Yong Zhang, Wenfeng Yang, Pengfei Liu, Bin Gan, Liujie Xu, Yuanshen Qi, and Wenwen Sun, Processing map for oxide dispersion strengthening Cu alloys based on experimental results and machine learning modelling, Int. J. Miner. Metall. Mater., (2025). https://doi.org/10.1007/s12613-025-3130-x
引用本文 PDF XML SpringerLink

基于实验结果和机器学习建立氧化物弥散强化铜合金的加工图

摘要: 氧化物弥散强化(ODS)合金由于弥散分布的细小氧化物颗粒而具有优异的高温稳定性和蠕变强度,但这些强化相的存在同时降低了材料的加工性能,因此建立精确的加工图对优化ODS合金的热变形工艺具有重要意义。本研究采用结合粒子群优化算法的反向传播人工神经网络(PSO-BP ANN)模型预测含0.25wt% Al2O3颗粒的铜合金的高温热变形行为,并与应变补偿Arrhenius模型和反向传播人工神经网络(BP ANN)模型的预测精度进行比较。其中ODS铜合金采用内氧化还原法制备,并且在400–800°C、应变速率10−2–10 s−1范围内进行系统热压缩试验,获取高温流变应力训练数据。在三种模型中,PSO-BP ANN模型在预测过程中表现出更高的精度,决定系数超过0.99。结合PSO-BP ANN模型预测结果、工艺参数、力学行为、微观组织等方面构建了ODS铜合金的热加工图,揭示了不同变形参数下的稳定与失稳变形区域。本研究为ODS铜合金的热加工参数优化与成形工艺设计提供了新的途径。

 

Processing map for oxide dispersion strengthening Cu alloys based on experimental results and machine learning modelling

Abstract: Oxide dispersion strengthened (ODS) alloys are extensively used owing to high thermostability and creep strength contributed from uniformly dispersed fine oxides particles. However, the existence of these strengthening particles also deteriorates the processability and it is of great importance to establish accurate processing maps to guide the thermomechanical processes to enhance the formability. In this study, we performed particle swarm optimization-based back propagation artificial neural network model to predict the high temperature flow behavior of 0.25wt% Al2O3 particle-reinforced Cu alloys, and compared the accuracy with that of derived by Arrhenius-type constitutive model and back propagation artificial neural network model. To train these models, we obtained the raw data by fabricating ODS Cu alloys using the internal oxidation and reduction method, and conducting systematic hot compression tests between 400 and 800°C with strain rates of 10−2–10 s−1. At last, processing maps for ODS Cu alloys were proposed by combining processing parameters, mechanical behavior, microstructure characterization, and the modeling results achieved a coefficient of determination higher than >99%.

 

/

返回文章
返回