Cite this article as:

Boyu Wu, Shengen Zhang, Shengyang Zhang, Bo Liu, and Bolin Zhang, Stability enhancement of MnOx–CeO2 via hydrophobic modification for NO reduction by NH3, Int. J. Miner. Metall. Mater., (2025). https://doi.org/10.1007/s12613-025-3151-5
Boyu Wu, Shengen Zhang, Shengyang Zhang, Bo Liu, and Bolin Zhang, Stability enhancement of MnOx–CeO2 via hydrophobic modification for NO reduction by NH3, Int. J. Miner. Metall. Mater., (2025). https://doi.org/10.1007/s12613-025-3151-5
引用本文 PDF XML SpringerLink

疏水改性提高MnOx–CeO2催化剂的稳定性及选择性催化还原NO的性能

摘要: MnOx–CeO2催化剂在低温条件下选择性催化还原(selective catalytic reduction ,SCR)NO时,仍然容易受到水汽和硫中毒的影响,限制了其实际应用。本文报道了一种经疏水改性的MnOx–CeO2催化剂,在苛刻条件下表现出更高的NO转化率和稳定性。该催化剂通过将非晶态CeO2负载在MnOx晶体上,再进一步在外表面修饰疏水二氧化硅而制备。通过调控疏水性二氧化硅修饰量,抑制了水分子的吸附并阻止了SO2与锰活性位点的相互作用,维持了NH3和NO的吸附与氢原子的扩散,实现了催化剂表面的分子选择性识别。在120°C、水汽与SO2共存的条件下,优化后的疏水改性催化剂仍可维持82%的NO转化率,而未经改性的催化剂仅为69%。经疏水改性后,NH3、H2O和SO2的平均吸附能分别降低了0.05、0.43和0.52 eV。反应的NO还原路径遵循Eley–Rideal机理。疏水改性提高了氢原子迁移的活化能,导致120°C条件下NO转化率略微下降(94% vs. 99%)。本研究阐明了疏水改性提高SCR催化剂稳定性的机理,为开发能在富水和含硫环境下高效运行的NH3-SCR抗中毒催化剂提供了一种可行策略。

 

Stability enhancement of MnOx–CeO2 via hydrophobic modification for NO reduction by NH3

Abstract: : MnOx–CeO2 catalysts for the low-temperature selective catalytic reduction (SCR) of NO remain vulnerable to water and sulfur poisoning, limiting their practical applications. Herein, we report a hydrophobic-modified MnOx–CeO2 catalyst that achieves enhanced NO conversion rate and stability under harsh conditions. The catalyst was synthesized by decorating MnOx crystals with amorphous CeO2, followed by loading hydrophobic silica on the external surfaces. The hydrophobic silica allowed the adsorption of NH3 and NO and diffusion of H, suppressed the adsorption of H2O, and prevented SO2 interaction with the Mn active sites, achieving selective molecular discrimination at the catalyst surface. At 120°C, under H2O and SO2 exposure, the optimal hydrophobic catalyst maintains 82% NO conversion rate compared with 69% for the unmodified catalyst. The average adsorption energies of NH3, H2O, and SO2 decreased by 0.05, 0.43, and 0.52 eV, respectively. The NO reduction pathway follows the Eley-Rideal mechanism, NH3* + * → NH2* + H* followed by NH2* + NO* → N2* + H2O*, with NH3 dehydrogenation being the rate determining step. Hydrophobic modification increased the activation energy for H atom transfer, leading to a minor decrease in the NO conversion rate at 120°C. This work demonstrates a viable strategy for developing robust NH3-SCR catalysts capable of efficient operation in water- and sulfur-rich environments.

 

/

返回文章
返回