Cite this article as:

Tian Yin, Yang Guo, Zheng Ma, Wenxin Hu, Qun Luo, Bin Liu, Jieyu Zhang, and Guangxin Wu, Experimental study and thermodynamic modeling of the phase equilibria in the Mg-rich corner of Mg–Zn–Mn system, Int. J. Miner. Metall. Mater., 32(2025), No. 10, pp.2523-2533. https://doi.org/10.1007/s12613-025-3153-3
Tian Yin, Yang Guo, Zheng Ma, Wenxin Hu, Qun Luo, Bin Liu, Jieyu Zhang, and Guangxin Wu, Experimental study and thermodynamic modeling of the phase equilibria in the Mg-rich corner of Mg–Zn–Mn system, Int. J. Miner. Metall. Mater., 32(2025), No. 10, pp.2523-2533. https://doi.org/10.1007/s12613-025-3153-3
引用本文 PDF XML SpringerLink

镁–锌–锰体系富镁角相平衡实验研究及热力学优化

摘要: 镁-锌-锰合金具有成本低、力学性能优异、耐蚀性高的优点。为了厘清镁-锌-锰合金在富镁角的相平衡关系,本文使用电子探针显微分析仪(EPMA)、X射线衍射仪(XRD)、透射电子显微镜(TEM)和差示扫描量热仪(DSC)等手段,采用平衡合金法对富镁角300–400°C的相平衡进行了实验研究。研究发现,锰原子会固溶到MgZn2中取代部分Zn原子,Mn的固溶度在400°C可达15.1at%。证实了400°C存在α-Mg + MgZn2 + α-Mn、Liquid + α-Mg + MgZn2两个三相平衡。基于本文的实验数据和文献数据,使用CALPHAD方法对Mg–Zn–Mn体系进行了热力学优化。采用热力学数据库计算得到反应“Liquid + α-Mn → α-Mg + MgZn2”的温度为430°C,符合DSC测试结果。此外,凝固路径计算结果较好地解释了铸态合金和退火态合金的微观组织。计算结果与实验数据之间吻合良好,证明了该热力学数据库的可靠性,为Mg–Zn–Mn合金的成分设计提供了指导。

 

Experimental study and thermodynamic modeling of the phase equilibria in the Mg-rich corner of Mg–Zn–Mn system

Abstract: Mg–Zn–Mn alloys have the advantages of low cost, excellent mechanical properties, and high corrosion resistance. To clarify the phase equilibria of Mg–Zn–Mn alloy in the Mg-rich corners, the present work experimentally investigated the phase equilibria in the Mg-rich corner at 300–400°C with equilibrated alloy method using electron probe micro analyzer (EPMA), X-ray diffractometer (XRD), transmission electron microscopy (TEM), and differential scanning calorimeter (DSC). Mn atoms were found to dissolve into MgZn2 to form a ternary solid-solution type compound, in which Mn content can be up to 15.1at% at 400°C. Three-phase equilibrium of α-Mg + MgZn2 + α-Mn and liquid + α-Mg + MgZn2 were confirmed at 400°C. Subsequently, thermodynamic modeling of the Mg–Zn–Mn system was carried out using the CALPHAD method based on the experimental data of this work and literature data. The calculated invariant reaction Liquid + α-Mn → α-Mg + MgZn2 at 430°C shows good agreement with the DSC results. In addition, the results of solidification path calculations explain the microstructure in the as-cast and annealed alloys well. The agreement between the calculated results and experimental data proves the self-consistency of the thermodynamic database, which can provide guidance for the compositional design of Mg–Zn–Mn alloys.

 

/

返回文章
返回