Cite this article as:

Xiaoxiao Cao, Haoyan Lyu, Yanlong Chen, Jiangyu Wu, Hideki Shimada, Takashi Sasaoka, and Akihiro Hamanaka, CO2 nanobubble-enhanced cement–fly ash backfill: Optimizing aggregate gradation and microstructure, Int. J. Miner. Metall. Mater., (2025). https://doi.org/10.1007/s12613-025-3154-2
Xiaoxiao Cao, Haoyan Lyu, Yanlong Chen, Jiangyu Wu, Hideki Shimada, Takashi Sasaoka, and Akihiro Hamanaka, CO2 nanobubble-enhanced cement–fly ash backfill: Optimizing aggregate gradation and microstructure, Int. J. Miner. Metall. Mater., (2025). https://doi.org/10.1007/s12613-025-3154-2
引用本文 PDF XML SpringerLink

CO2纳米气泡改性水泥-粉煤灰充填材料:骨料级配与微观结构调控

摘要: 矿山充填材料亟需提升力学性能并实现低碳转型。本研究探索了优化集料分形级配并引入CO2纳米气泡技术对水泥-粉煤灰基充填材料(CFB)性能提升的协同效应机理。通过流动性评价、时间试验、单轴压缩试验、压汞法(MIP)、扫描电镜-能谱分析(SEM-EDS)和热重-差示扫描量热分析(TG-DTG)等方法,系统研究了材料的流动性、凝结时间、单轴抗压强度、弹性模量、孔隙率、微观结构和CO2储存性能等性能。实验结果表明,分形维数和CO2纳米气泡的协同作用显著提高了材料的密度和强度。当分形维数达到2.65时,粗细骨料的质量比达到最佳平衡,结构密度也显著提高。此时,单轴抗压强度和弹性模量达到峰值,分别提高了13.46%和27.47%。CO2纳米气泡通过促进水化反应和碳化作用增强材料性能。在微观层面上,CO2纳米气泡促进了C–S–H(水合硅酸钙)、C–A–S–H(水合硅酸钙铝)凝胶和CaCO3的形成,这是提升性能的主要途径。热重分析表明,当分形维数为2.65时,水化产物的脱水和CaCO3的脱碳过程最为显著,CO2纳米气泡促进了碳化反应,使其性能超越了自然状态。经不同分形维数的二氧化碳纳米气泡水处理后,水泥-粉煤灰基材料的二氧化碳封存率提高了12.4wt%至99.8wt%。该结果不仅为低碳填料的设计和实施提供了科学见解,而且为加强绿色采矿实践和促进资源可持续利用提供了坚实的理论基础。

 

CO2 nanobubble-enhanced cement–fly ash backfill: Optimizing aggregate gradation and microstructure

Abstract: Mine filling materials urgently need to improve mechanical properties and achieve low-carbon transformation. This study explores the mechanism of the synergistic effect of optimizing aggregate fractal grading and introducing CO2 nanobubble technology to improve the performance of cement–fly ash-based backfill materials (CFB). The properties including fluidity, setting time, uniaxial compressive strength, elastic modulus, porosity, microstructure and CO2 storage performance were systematically studied through methods such as fluidity evaluation, time test, uniaxial compression test, mercury intrusion porosimetry (MIP), scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS), and thermogravimetric-differential thermogravimetric analysis (TG-DTG). The experimental results show that the density and strength of the material are significantly improved under the synergistic effect of fractal dimension and CO2 nanobubbles. When the fractal dimension reaches 2.65, the mass ratio of coarse and fine aggregates reaches the optimal balance, and the structural density is greatly improved at the same time. At this time, the uniaxial compressive strength and elastic modulus reach their peak values, with increases of up to 13.46% and 27.47%, respectively. CO2 nanobubbles enhance the material properties by promoting hydration reaction and carbonization. At the microscopic level, CO2 nanobubble water promotes the formation of C–S–H (hydrated calcium silicate), C–A–S–H (calcium-alumino-silicate hydrate) gel and CaCO3, which is the main way to enhance the performance. Thermogravimetric studies have shown that when the fractal dimension is 2.65, the dehydration of hydration products and the decarbonization process of CaCO3 are most obvious, and CO2 nanobubble water promotes the carbonization reaction, making it surpass the natural state. The CO2 sequestration quality of cement–fly ash-based materials treated with CO2 nanobubble water at different fractal dimensions increased by 12.4wt% to 99.8wt%. The results not only provide scientific insights for the design and implementation of low-carbon filling materials, but also provide a solid theoretical basis for strengthening green mining practices and promoting sustainable resource utilization.

 

/

返回文章
返回