Cite this article as:

Chuang Guan, Xizhou Kai, Wei Qian, Ran Tao, Gang Chen, and Yutao Zhao, Anisotropic thermal conductivity of aluminum matrix composites reinforced by graphene nanoplates and ZrB2 nanoparticles, Int. J. Miner. Metall. Mater., (2025). https://doi.org/10.1007/s12613-025-3156-0
Chuang Guan, Xizhou Kai, Wei Qian, Ran Tao, Gang Chen, and Yutao Zhao, Anisotropic thermal conductivity of aluminum matrix composites reinforced by graphene nanoplates and ZrB2 nanoparticles, Int. J. Miner. Metall. Mater., (2025). https://doi.org/10.1007/s12613-025-3156-0
引用本文 PDF XML SpringerLink

石墨烯纳米片与ZrB2纳米颗粒增强铝基复合材料热导率的各向异性

摘要: 随着航空航天、轨道交通、新能源等领域发展,轻量化高性能结构件成为必然趋势。相关部件需兼具高强韧与高导热性以保障安全。传统单一增强铝基复合材料面临强韧性倒置,及性能局限等问题。本研究基于石墨烯纳米片(GNPs)与原位ZrB2纳米颗粒协同增强的铝基复合材料,在保证其强韧性的基础上,研究了其导热性能的调控机制与优化效果。采用原位熔体反应与半固态搅拌铸造技术,结合热轧变形工艺,成功制备出一种具有非连续层状结构的GNPs-ZrB2/AA6111复合材料。微观结构表明,平行与轧制面排列的GNPs、条带状分布的ZrB2纳米颗粒与铝晶粒共同构筑了非连续层状结构。二维GNPs与非连续层状结构在结构上存在高度一致性,使GNPs能够充分发挥其超高面内热导率。因此,GNPs-ZrB2/AA6111复合材料面内热导率达到230 W/(m·K),高于基体面内热导率206 W/(m·K)。复合材料面内热导率的提升,主要得益于GNPs固有的超高面内热导率,以及增强体与基体构成的非连续层状结构。然而,复合材料的面内热导率与面间热导率呈现出显著的各向异性。GNPs-ZrB2/AA6111复合材料面间热导率低于基体。复合材料面间热导率降低,主要归因于GNPs本征的低面间热导率,以及法向界面密度的显著增加。

 

Anisotropic thermal conductivity of aluminum matrix composites reinforced by graphene nanoplates and ZrB2 nanoparticles

Abstract: This study investigates the anisotropic thermal conductivity of aluminum matrix composites reinforced with graphene nanoplates (GNPs) and in situ ZrB2 nanoparticles, while simultaneously maintaining high strength and toughness. A discontinuous layered GNPs-ZrB2/AA6111 composite was prepared using in situ melt reactions and semi-solid stirring casting technology, combined with hot rolling deformation processing. Microstructural analysis revealed that the GNPs were aligned parallel to the rolling direction–transverse direction (RD–TD) plane, whereas the ZrB2 nanoparticles aggregated into cluster strips, collectively forming a discontinuous layered structure. This multilayer arrangement maximized the in-plane thermal conductivity of the GNPs. The tightly bonded GNP/Al interfaces with the locking of CuAl2 nanoparticles ensured that the GNP fully exploited their high thermal conductivity. Therefore, the GNPs-ZrB2/AA6111 composite achieved high in-plane thermal conductivity (230 W/(m·K)), which is higher than that of the matrix (206 W/(m·K)). The improved in-plane thermal conductivity is primarily attributed to the exceptionally high intrinsic in-plane thermal conductivity of the GNPs and their two-dimensional layered structure. However, the composite exhibited pronounced thermal conductivity anisotropy in the in-plane and through-plane directions. The reduced through-plane thermal conductivity is predominantly caused by the intrinsically low through-plane thermal conductivity of the GNPs and the increased interfacial thermal resistance from the additional grain boundaries.

 

/

返回文章
返回