Cite this article as:

Shiyue Zhu, Tian Li, Ruoyu Li, Xiaoyong Lu, Yihan Ling, and Dong Tian, A high-entropy engineered perovskite oxide for efficient and stable LSCF-based air electrode of tubular reversible solid oxide cells, Int. J. Miner. Metall. Mater., 32(2025), No. 11, pp.2621-2627. https://doi.org/10.1007/s12613-025-3159-x
Shiyue Zhu, Tian Li, Ruoyu Li, Xiaoyong Lu, Yihan Ling, and Dong Tian, A high-entropy engineered perovskite oxide for efficient and stable LSCF-based air electrode of tubular reversible solid oxide cells, Int. J. Miner. Metall. Mater., 32(2025), No. 11, pp.2621-2627. https://doi.org/10.1007/s12613-025-3159-x
引用本文 PDF XML SpringerLink

高熵工程构筑高效稳定的LSCF空气极用于可逆管式固体氧化物燃料电池

摘要: 开发高活性且稳定的空气电极仍是可逆固体氧化物电池(R-SOCs)面临的挑战。本文报道了一种A位高熵工程化构筑的钙钛矿氧化物La0.2Pr0.2Nd0.2Ba0.2Sr0.2Co0.8Fe0.2O3−δ(HE-LSCF),并系统地研究了其在管式可逆固体氧化物电池中的电催化活性和稳定性。HE-LSCF空气电极在700°C下展现出优异的氧还原反应活性,极化电阻仅为0.042 Ω·cm2,远低于La0.6Sr0.4Co0.8Fe0.2O3−δ (LSCF),表明HE-LSCF具有卓越的催化活性。同时,在700°C、H2(~10% H2O)气氛下,采用HE-LSCF作为空气极材料的管式电池在燃料电池模式下展现出1.18 W·cm−2的高峰值功率密度,在电解模式下1.5 V时呈现出0.52 A·cm−2的电解电流密度。更重要的是,采用HE-LSCF的管式R-SOC在180小时可逆循环测试中表现出良好的稳定性。研究表明,高熵结构设计能显著提升管式R-SOC中LSCF电极的活性与稳定性。

 

A high-entropy engineered perovskite oxide for efficient and stable LSCF-based air electrode of tubular reversible solid oxide cells

Abstract: Developing highly active and stable air electrodes remains challenging for reversible solid oxide cells (R-SOCs). Herein, we report an A-site high-entropy engineered perovskite oxide, La0.2Pr0.2Nd0.2Ba0.2Sr0.2Co0.8Fe0.2O3−δ (HE-LSCF), and its electrocatalytic activity and stability property are systematically probed for tubular R-SOCs. The HE-LSCF air electrode exhibits excellent oxygen reduction reaction (ORR) activity with a low polarization resistance of 0.042 Ω·cm2 at 700°C, which is much lower than that of La0.6Sr0.4Co0.8Fe0.2O3−δ (LSCF), indicating the excellent catalytic activity of HE-LSCF. Meanwhile, the tubular R-SOCs with HE-LSCF shows a high peak power density of 1.18 W·cm−2 in the fuel cell mode and a promising electrolysis current density of −0.52 A·cm−2 at 1.5 V in the electrolysis mode with H2 (~10% H2O) atmosphere at 700°C. More importantly, the tubular R-SOCs with HE-LSCF shows favorable stability under 180 h reversible cycling test. Our results show the high-entropy design can significantly enhance the activity and robustness of LSCF electrode for tubular R-SOCs.

 

/

返回文章
返回