Cite this article as:

Zhaoqi Song, Haitao Zhao, Kaixun Wang, Long Ma, Junheng Gao, Honghui Wu, Yuhe Huang, Chaolei Zhang, Jun Lu, Shuize Wang, and Xinping Mao, Revealing effect of Sn on the mechanical properties of resistance spot welds for 460 MPa grade HSLA steel, Int. J. Miner. Metall. Mater., 33(2026), No. 3, pp.874-887. https://doi.org/10.1007/s12613-025-3163-1
Zhaoqi Song, Haitao Zhao, Kaixun Wang, Long Ma, Junheng Gao, Honghui Wu, Yuhe Huang, Chaolei Zhang, Jun Lu, Shuize Wang, and Xinping Mao, Revealing effect of Sn on the mechanical properties of resistance spot welds for 460 MPa grade HSLA steel, Int. J. Miner. Metall. Mater., 33(2026), No. 3, pp.874-887. https://doi.org/10.1007/s12613-025-3163-1
引用本文 PDF XML SpringerLink

Sn对 460 MPa级 HSLA 钢电阻点焊接头力学性能的影响研究

摘要: 在碳中和炼钢的推动下,废钢使用量的增加提高了钢中的Sn含量。虽然Sn对钢的一般影响已得到研究,但其对电阻点焊的具体影响仍不明确。本研究探讨了Sn对 460 MPa高强度低合金钢中电阻点焊接头力学性能的影响。十字拉伸试验表明,不含Sn和含 0.09wt% Sn的点焊接头均出现拔出失效,其中含 0.09wt% Sn的点焊接头表现出更高的峰值载荷和能量吸收能力,这归因于Sn的固溶强化作用。然而,含 0.52wt% Sn的电阻点焊接头出现部分界面失效模式,显著降低了峰值载荷和能量吸收能力。主要原因是Sn在熔核区的枝晶间偏析,这削弱了原子间的结合力并降低了断裂韧性。这种严重的偏析源于电阻点焊的高冷却速率,该速率使初生凝固相从 δ 铁素体转变为奥氏体。幸运的是,双脉冲电阻点焊减轻了Sn的偏析,恢复了失效模式和力学性能。本研究评估了Sn对电阻点焊接头性能的影响,这些发现凸显了理解废钢相关残余元素在可持续钢铁生产中影响的更广泛意义。

 

Revealing effect of Sn on the mechanical properties of resistance spot welds for 460 MPa grade HSLA steel

Abstract: Driven by efforts toward carbon-neutral steelmaking, increased scrap usage elevates Sn content in steels. While the general effects of Sn on steel have been studied, its specific influence on resistance spot welding (RSW) remains unclear. This study investigates Sn’s impact on the mechanical properties of RSW joint of 460 MPa HSLA steel. Cross-tension tests reveal that both the RSW joint without Sn and the RSW joint·containing 0.09wt% Sn exhibit pull-out failure. The RSW joint containing 0.09wt% Sn showing higher peak load and energy absorption attributed to Sn’s solid–solution strengthening. Conversely, the RSW joint containing 0.52wt% Sn exhibited the partial interface failure mode, significantly reducing the peak load and energy absorption. The primary reason is the segregation of Sn in the interdendritic regions of the fusion zone, which weakens atomic cohesion and reduces fracture toughness. Such severe segregation arises from RSW’s high cooling rates, which shift the primary solidification phase from δ-ferrite to austenite. Fortunately, double-pulse RSW mitigates Sn segregation, restoring failure mode and mechanical performance. This study assesses the impact of Sn on RSW joint properties, and these findings highlight the broader significance of understanding scrap-related residual element effects in sustainable steel production.

 

/

返回文章
返回