Cite this article as:

A. Rajesh Kannan, Yasam Palguna, Hafiz Muhammad, Rehan Tariq, N. Siva Shanmugam, and Tea-Sung Jun, Elevated temperature tensile properties of wire arc additively manufactured 308L austenitic stainless steel, Int. J. Miner. Metall. Mater., (2025). https://doi.org/10.1007/s12613-025-3166-y
A. Rajesh Kannan, Yasam Palguna, Hafiz Muhammad, Rehan Tariq, N. Siva Shanmugam, and Tea-Sung Jun, Elevated temperature tensile properties of wire arc additively manufactured 308L austenitic stainless steel, Int. J. Miner. Metall. Mater., (2025). https://doi.org/10.1007/s12613-025-3166-y
引用本文 PDF XML SpringerLink

电弧增材制造 308L 奥氏体不锈钢的高温拉伸性能

摘要: 电弧增材制造(WAAM)为制造中大型奥氏体不锈钢部件提供了一种很有前景的方法,这类部件在航空航天、压力容器以及换热器等行业中至关重要。本研究考察了通过基于熔化极气体保护电弧焊的电弧增材制造(WAAM 308L)工艺制造的 SS308L 的微观结构特征和拉伸性能。在室温(25°C)、300°C 和 600°C 下,对成品状态的试样进行了拉伸试验。其微观结构主要由奥氏体晶粒组成,残余的 δ- 铁素体相分布在奥氏体基体中。按照铁素体数量(FN)来衡量,铁素体含量沿构建方向从上到下介于 2.30 到 4.80 之间,中间区域的铁素体含量为 3.60 FN。水平取向试样(WAAM 308L - H)的拉伸强度较高,而垂直取向试样的延展性更好。拉伸试验结果表明,随着测试温度的升高,强度逐渐降低,在 600°C 时可观察到明显的动态应变时效(DSA)现象。垂直试样和水平试样之间锯齿状行为的差异可能归因于构建方向所导致的微观结构差异。在 600°C 时,水平取向(WAAM 308L - H)的 WAAM 308L 的屈服强度(YS)、极限抗拉强度(UTS)和伸长率(EL)分别为(240 ± 10)MPa、(442 ± 16)MPa 和(54 ± 2.00)%,而垂直取向(WAAM 308L - V)的相应数值分别为(248 ± 9)MPa、(412 ± 19)MPa 和(75 ± 2.80)%。断口表面显示出从室温及 300°C 下的韧性酒窝状断口向 600°C 下带有沿晶面的韧性–脆性混合断裂的转变。该研究探讨了电弧增材制造生产的 308L 不锈钢在高温条件下的适用性及局限性,为其在耐热结构部件和工业部件中的应用提供了重要见解。

 

Elevated temperature tensile properties of wire arc additively manufactured 308L austenitic stainless steel

Abstract: Wire arc additive manufacturing (WAAM) presents a promising approach for fabricating medium-to-large austenitic stainless steel components, which are essential in industries like aerospace, pressure vessels, and heat exchangers. This research examines the microstructural characteristics and tensile behaviour of SS308L manufactured via the gas metal arc welding-based WAAM (WAAM 308L) process. Tensile tests were conducted at room temperature (RT, 25°C), 300°C, and 600°C in as-built conditions. The microstructure consists primarily of austenite grains with retained δ-ferrite phases distributed within the austenitic matrix. The ferrite fraction, in terms of ferrite number (FN), ranged between 2.30 and 4.80 along the build direction from top to bottom. The ferrite fraction in the middle region is 3.60 FN. Tensile strength was higher in the horizontal oriented samples (WAAM 308L-H), while ductility was higher in the vertical ones. Tensile results show a gradual reduction in strength with increasing test temperature, in which significant dynamic strain aging (DSA) is observed at 600°C. The variation in serration behavior between the vertical and horizontal specimens may be attributed to microstructural differences arising from the build orientation. The yield strength (YS), ultimate tensile strength (UTS), and elongation (EL) of WAAM 308L at 600°C were (240 ± 10) MPa, (442 ± 16) MPa, and (54 ± 2.00)%, respectively, in the horizontal orientation (WAAM 308L-H), and (248 ± 9) MPa, (412 ± 19) MPa, and (75 ± 2.80)%, respectively, in the vertical orientation (WAAM 308L-V). Fracture surfaces revealed a transition from ductile dimple fracture at RT and 300°C to a mixed ductile–brittle failure with intergranular facets at 600°C. The research explores the applicability and constraints of WAAM-produced 308L stainless steel in high-temperature conditions, offering crucial insights for its use in thermally resistant structural and industrial components.

 

/

返回文章
返回