Cite this article as:

Jingjing Dong, Liu Pei, Yifei Wang, Yan Liu, Xingliang Liu, Zhidan Diao, Jianling Li, Yejing Li, and Xindong Wang, Cu/Ti-doped O3-type cathode materials for high cyclic stability of sodium-ion batteries, Int. J. Miner. Metall. Mater., (2025). https://doi.org/10.1007/s12613-025-3180-0
Jingjing Dong, Liu Pei, Yifei Wang, Yan Liu, Xingliang Liu, Zhidan Diao, Jianling Li, Yejing Li, and Xindong Wang, Cu/Ti-doped O3-type cathode materials for high cyclic stability of sodium-ion batteries, Int. J. Miner. Metall. Mater., (2025). https://doi.org/10.1007/s12613-025-3180-0
引用本文 PDF XML SpringerLink

Cu/Ti掺杂O3型正极材料实现钠离子电池高循环稳定性

摘要: O3型NaNi1/3Fe1/3Mn1/3O2正极材料具有比容量高、高低温性能优良等特性,是一种具有实际应用价值的钠离子电池正极材料,但目前仍然存在高压相变导致循环差的弊端。本文通过高温固相法将Cu/Ti引入O3型NaNi1/3Fe1/3Mn1/3O2正极材料中,结合理论和实验研究发现,Cu掺杂提供了较高的氧化还原电位(3.6V vs Na/Na+),提高材料的可逆容量,调控电荷补偿过程。Ti的引入可消除钠层中钠离子与空位的有序排布,平滑充放电曲线,抑制高压相变,提升材料循环稳定性。制备的NaNi0.27Fe0.28Mn0.33Cu0.05Ti0.06O2正极,在2–4.2 V电压范围内提供142.97 mAh·g–1(0.1 C)的比容量,在半电池测试中,1 C下循环300次后容量保持率为72.81%。XRD测试表明,Cu/Ti的引入显著扩大了层间距,有利于钠离子的嵌入与脱出,具有更加优异的扩散动力学。本文所提出的策略不仅稳定了结构,还确保了高可逆容量,为设计具有高容量和优异循环稳定性的SIB衍生阴极指明了方向。

 

Cu/Ti-doped O3-type cathode materials for high cyclic stability of sodium-ion batteries

Abstract: The outstanding performance of O3-type NaNi1/3Fe1/3Mn1/3O2 (NFM111) at both high and low temperatures coupled with its impressive specific capacity makes it an excellent cathode material for sodium-ion batteries. However, its poor cycling, owing to high-pressure phase transitions, is one of its disadvantages. In this study, Cu/Ti was introduced into NFM111 cathode material using a solid-phase method. Through both theoretically and experimentally, this study found that Cu doping provides a higher redox potential in NFM111, improving its reversible capacity and charge compensation process. The introduction of Ti would enhance the cycling stability of the material, smooth its charge and discharge curves, and suppress its high-voltage phase transitions. Accordingly, the NaNi0.27Fe0.28Mn0.33Cu0.05Ti0.06O2 sample used in the study exhibited a remarkable rate performance of 142.97 mAh·g–1 at 0.1 C (2–4.2 V) and an excellent capacity retention of 72.81% after 300 cycles at 1 C (1 C = 150 mA·g–1).

 

/

返回文章
返回